J/ψ polarization measurements with SBS

- Purpose: High sensitivity search for LHCb pentaquark and other possible phenomena near J/ψ threshold, using double polarization observables.
- How: Using high beam current, high SBS acceptance, proton polarimetry and/or polarized target. All three final state particles registered in the electron $(e^+ \text{ or } e^-)$ and hadron $(e^+p \text{ or } e^-p)$ arms:

and/or
$$\vec{\gamma} \overrightarrow{p} \rightarrow J/\psi \overrightarrow{p} \rightarrow e^+ e^- \overrightarrow{p}$$
 K_{LL}
 $\vec{\gamma} \overrightarrow{p} \rightarrow J/\psi \overrightarrow{p} \rightarrow e^+ e^- p$ A_{LL}

LHCb pentaquarks

- J^P of P_c states not determined yet
- Molecules (most likely), but compact states or re-scattering effects not excluded

2

State	$M \;[{ m MeV}\;]$	$\Gamma \;[\mathrm{MeV}\;]$	(95% CL)	\mathcal{R} [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ~ {}^{3.7}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} ~ {}^{5.7}_{1.9}$	(< 20)	$0.53\pm0.16^{+0.15}_{-0.13}$

LHCb pentaquarks and J/ ψ photo-production

• If LHCb pentaquarks exist they should be seen in s-channel photoproduction (free of rescattering effects in the final state):

- M.Karliner and J.Rosner, arXiv: PLB 752, 329 (2016).
- A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

P_c(4457)

Br(P_c->J/ ψ p): J/ ψ cross-section - model-dependent upper limits

	$\mathcal{B}(P_c^+ \to J/\psi p)$	Upper Limits, $\%$	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$\rightarrow J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_{c}^{+}(4440)$	1.6	2.3	1.2	1.8
$P_{c}^{+}(4457)$	2.7	3.8	2.9	3.9

Upper limits at 90% confidence level

$Br(P_c -> J/\psi p)$ calculations: molecular vs hadrocharmonium

model	$\Gamma_{P_c}, { m MeV}$	$\Gamma_{J/\psi p}, { m MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03 (4450)	0.14% (4450)	$1/2^{-}$ (4312)	M.Eides and V.Petrov
(OPE)				$1/2^-$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$				$3/2^-$ (4457)	
hadro-	-(4312)	suppr.(4312)	suppr. (4312)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	25% (4440)	$1/2^-$ (4440)	and M.Eides, V.Petrov
	16.2 (4457)	11 (4457)	68% (4457)	$3/2^-$ (4457)	M.Polyakov,arXiv:1904.1161

all subsystems in color singlet states

Br(P_c->J/ψp) calculations: compact diquark

model	$\Gamma_{P_c}, \mathrm{MeV}$	$\Gamma_{J/\psi p}, \mathrm{MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
compact	_	suppressed	suppressed	$3/2^{-}$ (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				$5/2^+$ (4457)	

diquarks in color anti-triplet states

The bound-state effect in (uC)-diquark reduces the probability to form $C\overline{C}$ -state

Lower limits on $Br(P_c \rightarrow J/\psi p)$ from data?

 $\mathcal{B}(\Lambda_b \to P_c^+ K^-) < 10^{-3}$ at the level of $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$

(model dependent 2-4%) $> \mathcal{B}(P_c^+ \rightarrow J/\psi p) \neq 0.05\%$ GlueX

- J/ ψ is suppressed by 10-3, VMD coupling dominated by ρ and ω
- How to explain J/ ψ photoproduction at high energies with such suppression???
- Other papers (K. G. Boreskov and B. L. loffe, Sov. J. Nucl. Phys. 25, 331 (1977); Phys. G4 (1978) 989; Phys. Rev. Lett. 38 (1977) 263) suggest some moderate suppression (factor of 2-5)

If LHCb P_c⁺ states exist: bound (virtual) state, or kinematic effect?

- Expecting J^{PC} parameters from ongoing analysis by LHCb
- JPAC analysis: Pc(4312) virtual (unbound) state, i.e. attractive forces not strong enough to form bound state (pole not in the physical region)
- Nevertheless, even virtual state should produce some structure in the photoproduction cross section.

JPAC: PRL 123, 092001 (2019)

J/psi polarization measurements with SBS

LOI 12-18-001 submitted in 2018:

"Measurement of the parameters of the LHCb pentaquark states through double polarization asymmetries with SBS in Hall A" C.Fanelli, L.P., B. Wojtsekhowski.

PAC46:

"The measurement of polarization observables will be a novel and innovative way to probe the parameters of the newly discovered pentaquark states. The PAC encourages submission of a full proposal after observation through photoproduction is confirmed by an approved JLAB experiment."

Most likely if P_c exists, cross-section small:

- GlueX set model dependent upper limit on Br(P_c->J/ψp) of few percent, which doesn't exclude molecular interpretation.
- Expect additional suppression of the Pc cross-section up to a factor of 5 (VMD suppression).
- Cross-section experiment would hardly be sensitive to Br(P_c->J/ψp)<1% due to t-channel background.

However, still chance to observe effects of P_c states in the photo-production:

- Conservative lower limit (data-driven) $Br(P_c J/\psi p) > 0.05\%$
- Amplitude analysis of $P_c(4312)$: virtual state, should be seen in photo-production.
- Only polarization measurements can disentangle t- and s-channel for such low Pc yields.
- The P_c(4380) state has ~1 GeV width in photon energy, such wide state can only be identified with polarization measurements.

Some estimates for SBS: K_{LL} and A_{LL}

Some estimates for SBS: KLL and ALL

JPAC: Phys. Rev. D 100, 034019 (2019)

Toy MC assuming: using CPS and 75% polarized target for A_{LL} , 2% radiator for K_{LL} , and:

observableI
$$[\mu A]$$
 $\mathscr{L} [cm^{-2}s^{-1}]$ FOMdays A_{LL} 2.73.2 $10^{35}dE/E$ 0.52520 K_{LL} 60 $10^{37}dE/E$ 0.05620

Conclusions

- LHCb pentaquarks still not confirmed by other experiments; possibilities: molecular, virtual state, or kinematic effect.
- Extraction of the J^P numbers of the penaquark states (by LHCb) will certainly reduce many ambiguities in their interpretation.
- For low P_c yields, $Br(P_c \rightarrow J/\psi p) < 1\%$, and/or wide resonances, only polarization measurements could find some structures related to LHCb pentaquarks.
- SBS (high intensity, high acceptance, polarimetry) is in a good position to contribute in solving this puzzle.

Back-ups

Back-ups

• B. Bonin et al., NIM A288 p.379 (1990)

FOM on Carbon

labels: proton KINETIC energy

$Br(P_c \rightarrow J/\psi p)$ calculations: pentaquark models

model	$\Gamma_{P_c}, \mathrm{MeV}$	$\Gamma_{J/\psi p}, {\rm MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03(4450)	0.14% (4450)	$1/2^{-}$ (4312)	M.Eides and V.Petrov
(OPE)				$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$				$3/2^{-}$ (4457)	
hadro-	- (4312)	suppr.(4312)	suppr. (4312)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	25%~(4440)	$1/2^{-}$ (4440)	and M.Eides, V.Petrov
	16.2(4457)	11 (4457)	68% (4457)	$3/2^-$ (4457)	M.Polyakov,arXiv:1904.116
compact	_	suppressed	suppressed	$3/2^{-}$ (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				$5/2^+$ (4457)	
molecular	9.8* (4312)	6.5	66%	$1/2^{-}$ (4312)	ZH. Guo and J.Oller
(ERE)	20.6* (4440)	16.3	79%	$1(3)/2^{-}$ (4440)	Phys.Lett.B793, 144
$\Sigma_c \bar{D}^{(*)}$	6.4* (4457)	3.5	55%	$1(3)/2^{-}$ (4457)	
molecular	15.2 (4306)	4**	26%	$1/2^{-}$ (4306)	C.Xiao, J.Nieves, E.Oset,
(DSE)	23.4 (4453)	18**	77%	$1/2^{-}$ (4453)	arxiv:1904.01296
$\Sigma_c \bar{D}^{(*)}$	3.0(4453)	2**	67%	$3/2^{-}$ (4453)	Phys.Rev.D88, 056012

* The total width measured by LHCb has been used.

** The width calculated from coupling constants.