Physics with positron beam using SBS An Overview of the Positron Working Group White Paper

Axel Schmidt

SBS Collaboration Meeting

July 14, 2020

Positron Working Group at JLab

Wiki page:

wiki.jlab.org/pwgwiki

Mailing list:

Sign-up:

pwg-request@jlab.org

Contacts:

- Eric Voutier, Orsay
- Joe Grames, JLab

PWG Recent Activities

2017:

International Workshop on Physics with Positrons at Jefferson Lab

2018:

Letter of Intent to PAC46

2020:

- 2 DVCS Proposals to PAC48
- White Paper: An Experimental Program with Positron Beams at the Jefferson Laboratory

Putting positrons into CEBAF

See 2020 Proposals, 2018 LOI for more details.

PEPPo Method: transfer polarization from e^- to e^+

- 1 μ A unpolarized
- 100 nA with 40% polarization

2020 White Paper

An Experimental Program with Positron Beams at the Jefferson Laboratory

Topical Areas

- Deeply-Virtual Compton Scattering
- Two-Photon Exchange (TPE)
- Tests of the Standard Model

Each area has several experiment concepts. *Three TPE concepts use SBS.*

Positrons help separate DVCS from Bethe-Heitler

- Beam charge asymmetries for Deeply Virtual Compton Scattering on the proton at CLAS12
- Deeply Virtual Compton Scattering using a positron beam in Hall C
- 4 additional white paper concepts

Positrons can be used to search for possible dark photons.

Hard two-photon exchange may explain the proton's form factor discrepancy.

Hard two-photon exchange may explain the proton's form factor discrepancy.

Hard two-photon exchange may explain the proton's form factor discrepancy.

Hard TPE can be accessed through several different observables.

$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} = 1 - 4G_M \operatorname{Re}\left(\delta \tilde{G}_M + \frac{\epsilon \nu}{M^2} \tilde{F}_3\right) - \frac{4\epsilon}{\tau} G_E \operatorname{Re}\left(\delta \tilde{G}_E + \frac{\nu}{M^2} \tilde{F}_3\right) + \mathcal{O}(\alpha^4)$$

$$\frac{P_t}{P_l} = \sqrt{\frac{2\epsilon}{\tau(1+\epsilon)}} \frac{G_E}{G_M} \times \left[1 + \operatorname{Re}\left(\frac{\delta \tilde{G_M}}{G_M}\right) + \frac{1}{G_E} \operatorname{Re}\left(\delta \tilde{G_E} + \frac{\nu}{m^2} \tilde{F}_3\right) - \frac{2}{G_M} \operatorname{Re}\left(\delta \tilde{G_M} + \frac{\epsilon\nu}{(1+\epsilon)m^2} \tilde{F}_3\right) + \mathcal{O}(\alpha^4) \right]$$

OLYMPUS, CLAS, VEPP-3 observed small TPE but only covered $Q^2 < 2 \text{ GeV}^2$.

Polarization transfer in $\vec{e}^+p \rightarrow e^+\vec{p}$ scattering using the Super BigBite Spectrometer

- A. J. R. Puckett et al.
 - 4.4 GeV *e*⁺ beam
 - 40 cm liquid H₂ target
 - SBS for proton polarimetry
 - CDET + ECAL for electron detection

Polarization transfer in $\vec{e}^+ p \rightarrow e^+ \vec{p}$ scattering using the Super BigBite Spectrometer

- A. J. R. Puckett et al.
 - 4.4 GeV *e*⁺ beam
 - 40 cm liquid H₂ target
 - SBS for proton polarimetry
 - CDET + ECAL for electron detection

Lepton	Ee	$\langle Q^2 \rangle$	θ_e	$\langle\epsilon angle$	θ_p	p_p	Event rate	Days
	GeV	ĠeV ²	deg.		deg.	GeV	Hz	
e ⁺	4.4	2.6	27.0	0.84	36.2	2.15	16	30
e^+	4.4	3.4	32.5	0.76	31.1	2.56	7	60
e ⁻	4.4	3.4	32.5	0.76	31.1	2.56	1,050	1

This would be mellow compared with upcoming high-rate SBS measurements.

Direct two-photon exchange measurement via e^+p/e^-p scattering at low ϵ in Hall A

E. Cline et al.

- Unpolarized inclusive elastic scattering
- SBS, BigBite, and 1 HRS to maximize acceptance
- 2 week measurement

Direct two-photon exchange measurement via e^+p/e^-p scattering at low ϵ in Hall A

Transverse single-spin asymmetries are only possible with multi-photon exchange.

$$A_{n} = \frac{\sqrt{2\epsilon(1+\epsilon)}}{\sqrt{\tau} \left(G_{M}^{2} + \frac{\epsilon}{\tau}G_{E}^{2}\right)} \times \left[-G_{M} \operatorname{Im}\left(\delta \tilde{G}_{E} + \frac{\nu}{M^{2}}\tilde{F}_{3}\right) + G_{E} \operatorname{Im}\left(\delta \tilde{G}_{M} + \frac{2\epsilon\nu}{M^{2}(1+\epsilon)}\tilde{F}_{3}\right)\right] + \mathcal{O}(\alpha^{4})$$

Target-Normal Single Spin Asymmetries measured with positrons

- A. Schmidt et al.
 - Unpolarized inclusive elastic scattering (100 nA)
 - Polarized frozen spin proton target
 - SBS, BigBite, and 1 HRS to maximize acceptance
 - 15-day measurement

Summary

Wiki page:

wiki.jlab.org/pwgwiki

Mailing list:

- Sign-up:
- pwg-request@jlab.org

Check out our upcoming White Paper • Hopefully on arXiv in a couple weeks.