Hall A Update

Super BigBite Spectrometer Collaboration Meeting July 14, 2020

Thia Keppel

CREX

Electroweak asymmetry on ⁴⁸Ca to measure the weak charge

Getting ready to resume!

- Work planning in Hall, shift crews,....
- Spectrometer magnets
- Target (re-installation)
- Polarimeter fixes

Charge total vs shift

Planning for SAD 2020 (i.e. SBS installation!)

- Remove PREX2/CREX Equipment
- Upgrade LCW System (parts ordered, documentation in process)
- Assemble SBS Equipment
 - Install SBS Magnet & Detector Systems
 - Install Big Bite Magnet & Detector Systems
 - Install Target Chamber, Exit Beamline, and Tower Assembly
 - Install Electronics Bunkers
 - Equipment Commissioning and Testing
- Decommission HRS-R
 - Warmup Cryogenic system.
 - Rotate HRS-R pass rollup door
 - Cool down and cleanup HRS-L cryogenic system
- Facilities Work List
 - Hall power upgrade (contract in place for upgrade to 2MVA)
 - Move small AHU, replace main (overhead) AHU
 - Move various electrical connections along the wall
 - <u>- Changeout overhead lights</u>
 - Repair ground water leak near Compton

Continued Hall Emphasis: SUPER BIG Efforts for **SUPER BIGBITE** SPECTROMETER Installation

Hadron Calorimeter (JLab, CMU, INFN Catania)

- Detects multiple GeV protons and neutrons.
 - 40 iron layers (absorbers) create particle showers.
 - 40 scintillator layers sample energy.
- 288 modules over 4 subassemblies.
 - Fully assembled and cabled.
 - Data acquisition system operational.
- Cosmic ray tests underway.
- Approaching 0.5 ns timing resolution goal

1.526

0.9918

0.5348

SBS GEM-based tracking (UVA, INFN Rome, HU, Uconn, JLab)

- Assembly of five 50x60cm² modules into one chamber
- Five chambers assembled. Schedule to complete remaining six chambers is six months
- A testing "factory" with large scale DAQ setup
- Have engaged Physics Division Detector and Imaging group for general GEM development and support (also CLAS12, SoLID, TDIS,..)

0.6

0.55

GEM efficiency and resolution

- · GEM efficiency and resolution with the current algorithm
- GEM is counted as efficient if there is a reconstructed hit within +/- 5 strips (2mm) around the MC hit
- GEM resolution: the difference between the MC hit and its closest reconstructed hit within the +/- 5 strips range Graph reso hist y

Simulation

Cosmic ray test stand

BigBite Detector Package

Hodoscope (Glasgow U, JLab)

- Counter holding method was improved.
- Rigidity of individual counters is improving.
- Front-end electronics was installed
- DAQ is under commissioning

Hall A SBS, MOLLER, SoLID Experiments

Gas Cherenkov (W&M, JMU, NCA&T)

 510 PMT are being calibrated using cosmic data by comparing ADC to TDC Timeover-Threshold.

Weldment

GRINCH Layout

Preshower & Shower (JLab, Uconn, Yerevan)

- Cosmic testing done to measure each block's gain versus HV
- Lower performing blocks were replaced in the Shower.
- Preshower blocks were replaced with radiation hard from HERMES

ADC(21) vs. TDC 501's 'Time over Threshold

• Magnetic shielding on shower and preshower upgraded to meet field conditions during GMn experiment.

GEM chambers (UVa, INFN/Sanita)

- Rear chamber was test installed
- Front holding frame was optimized for operation
- Two extra chambers with UV strip orientation are under construction Jefferson Lab

12-GEV PHYSICS SUPPORT: POLARIZED 3HE

Polarized ³He for A1n/d2n experiment in Hall C

- 30 μ A on 40 cm, ~10 atm ³He gas
- L ~ 2.2x10³⁶ cm⁻²s⁻¹ x2 previous highest L
- In-beam polarization ~ 55%
- Polarimetry precision ~ 3%

Main challenge was to resume cell production

Polarized ³He for GEn experiment in Hall A

- 60 μA on 60 cm, ~10 atm ³He gas
- L ~ 6.6x10³⁶ cm⁻²s⁻¹ x3 higher L again
- In-beam polarization ~ 55-60%
- Polarimetry precision ~ 3%

Main challenge: glass/metal end window of cell

Readying Additional Hardware for G_eⁿ-RP / E12-17-004

• Active Analyzer (RP)

 \rightarrow segmented plastic scint. array \rightarrow np recoil vertex identification

- Recoil proton detectors (RP)
 - \rightarrow 2 packages total:
 - » One on SBS Left
 - » One on SBS Right
 - \rightarrow Each package contains
 - » 1x Hodoscope array
 - timing, coarse location
 - » 2x UVa GEM planes
 - proton tracking

- Inline GEMs (R + ChEx)
 - \rightarrow 2x INFN + 6x UVa GEMs
 - \rightarrow charged particle veto
 - \rightarrow large angle proton tracking (RP)
- Steel Analyzer (ChEx)

G_Eⁿ-RP Status

• ERR

- → Some ongoing questions from the ERR Committee regarding GEM status need resolution
 - Significant benefit to entire SBS program – accelerates GEM schedule
- → October 15 deadline allows for scheduling
- E&D work continues
- Adds substantially to installation

PREX2/CREX as (one) GEM testing ground

Figure 19: PRex GEM Fake Hit Rate

shows the sigma cut used as a threshold to identify the effective signals. The Y-axis is the false single strip hit ratio in a pedestal run. As expected the increasing threshold reduces the false hit probability; a standard 5 sigma cut limiting the false hit possibility to $1 * 10^{-4}$ for RHRS and $1.5 * 10^{-3}$ for LHRS. The higher false hit rate in the LHRS is due to the higher LHRS pedestal noise levels shown in fig 17.

Figure 18: GEM Efficiency Map

HRS	LHRS			RHRS		
Module	1	2	3	1	2	3
Efficiency	88%	76%	92%	88%	93%	94%

Table 2: PRex GEM Detector hits near (projected) VDC track

Figure 16: PRex Experiment GEM detectors Layout

11

MOLLER Timeline

- 2009: Approved by PAC
- 2010: Assigned A rating and awarded full beam time request of 344 PAC days
- 2014: DOE Science Review, Strong Endorsement
- December 2016: Director's Technical Cost and Schedule Review
- CD-0 achieved on Dec. 21, 2016 with caveat that project is "paused"
- 2015-2018: Work continues on physics design and simulation of apparatus
- 2019: Project restarted and OPC funding provided for preconceptual design and planning
 - Ongoing Computational Fluid Dynamics calculations for 4 kW LH₂ target
 - Spectrometer magnet hybrid vs segmented coil design
 - Evaluated vacuum vs inert gas in spectrometer decision to use vacuum
 - Optimized quartz detector geometry and acceptance
 - Ongoing conceptual design for support structures and shielding requirement evaluations
- April 2019: Director's Technical Cost and Schedule Review
- November 2019: Cost Review
- December 2019: Conceptual Design Review
- January 2020: Director's Technical Cost and Schedule Review
- May 2020: New Project Manager Jim Fast starts
- August 18-21 2020: CD-1 Director's Review scheduled ready
- September 22-24 2020: CD-1 Independent Project Review/OPA review) scheduled
- Design and prototyping in FY21-22; construction FY23-25; start of operations late FY25

Spectrometer Design (JLab, Manitoba)

Spectrometer Design (JLab, Manitoba)

C. Downstream coils – 7 off (2 possible designs)

E. Downstream magnet vacuum enclosure

F. Detector Frames

D. Upstream magnet vacuum enclosure

SoLID Timeline Overview Proposed QCD & Fundamental Symmetries MIE

Science Review – proposed late 2020

CD0 – proposed 2Q FY21

CD1 – proposed 1Q FY22 Unique Capability:

✓ High luminosity (10³⁷⁻³⁹)

 \checkmark Large acceptance detector with full ϕ coverage

Item	Date	
Director's Review	February 2015	
SoLID User Meeting with DOE/NP	November 2015	
Director's Review	February 2016	
Follow-Up to Director's Review	Late 2017	
SoLID User and JLab Management Meeting with DOE/NP	Mid 2018	
Pre-R&D Plan Submission - Updated Cost, Scheduled and Assessed Technical Risks	Summer 2019	
Director's Review	September 2019	
Follow-Up to Director's Review	End of 2019	
SoLID MIE Submission to DOE	February 2020	

Hall A SBS, MOLLER, SoLID Experiments

SoLID PreR&D – retiring the few risks

- Funding started this year (thank you!)
- DAQ: GEM readout and DAQ testing for high rates
- Cherenkov test for high rates/high background
 - test data acquired during A1n/d2n in Hall C
- CLEOII magnet static tests
- Met 1st quarter milestones

Low rate configuration (~300 kHz rate on maPMTs) at ~ 105 deg, 17 feet away from the target

CLEOII Solenoid Rehab – Static and Cold Test

Phase 1 Solenoid Rehab Milestones

- Solenoid rehab will confirm magnet condition
- Provide project risk reduction
- Refine magnet planning
- Estimated completion Sept 2021

