GEM commissioning for GEn-RP experiment (UVa GEMs) ### Thir Gautam Hampton University Jul, 15 2020 #### **Outline** - SBS GEM trackers for GEn-RP - Status of the UVa GEM commissioning - Daq and read out electronics - Auxiliary systems: Gas System, LV and HV - Recent cosmic data and the tracking results # SBS GEM trackers for GEn-RP ## 10 UVA GEM layers ## 2 INFN GEM layers ⇒ 2 INFN + 2 UVa la 2 INFN GEM layers ⇒ 1 IVa layers hehir - Charge-Exchange (CE) Polarimeter: ⇒ 2 INFN + 2 UVa layers, in front of Cu analyzer - ⇒ 4 UVa layers behind the Cu analyzer ### Proton-Recoil (PR) Polarimeter: ⇒ 2 Identical arms, 2 UVa GEM layers in each arm 60 cm Electronics Service Frame Holding Bar Spacer sector Stack of 3 GEM modules (40 \times 50 cm²) 150_{cm} # **SBS Neutron Polarimeter** - Charge Exchange (CE) Polarimeter - ■High-momentum forward protons (towards HCAL) after CE np → pn - 2 INFN GEM planes - 6 UVa GEM planes - 1 steel analyzer - Proton Recoil (PR) Polarimeter - Low-momentum large-angle recoiling protons after np → np - Active CH analyzer - 2 sections, one each side of CE Polarimeter - Each section has 2 UVa GEM planes and 1 plastic scintillator plane # SBS GEM detector commissioning (UVa) - → Prepare/test and place each GEM module - → Assembly of Aluminum structure and sable trays - \rightarrow Prepare and test necessary backplanes : Four 12-slot - eight 5-slot backplanes - → Cabling: Blue and white HDMI cables - → Assembly of Auxiliary systems and HV testing # Status of the UVa GEM layers assembly in EEL 124 - → All 5 layers on the cosmic stand are tested and validated - → HV test performed regularly. - → We took cosmic data with all the layers on the cosmic stand - → Layers 3, 4 and 5 assembly are ready for the experiment - →Layer 1 and 2 are going to be taken out for some modifications - → Layer 6 is sitting on the assembly table. It has passed the HV tests and readout electronics tests and ready to go to the cosmic stand # **GEM Readout Electronics** #3 Analog+ 1 Digita **HDMI Cables** #### 128 analog ch / APV25 **ASIC** - 3.4 ms trigger latency (analog pipeline) - at 40 MHz Capable of sampling signal - Multiplexed analog output (100 kHz readout rate) Chanel APV #### connected to MPDs **HDMI** cables Rear Tracker 113000 880 70 Front 14000 108 ∞ **Tracker** #### INFN MPD Panel - Arriga GX FPGA 128 MB DDR2-RAM - Firmware V4.0 (74% resources): FIR Filter (16 param) - Zero Suppression - pedestal subtraction Common mode and - ≈2 ns trigger time Remote config, resolution ## Daq and readout electronics MPD Daq and trigger rack 1 #### First rack: - →Has 2 standard VME crates for the MPD electronics - →Holding 28 MPDs for 342 APV25 cards - →Configured to read out 4 layers on the cosmic stand - →Trigger signal distribution (JLab custom module) - →Wiener HV power supply crates for the GEM #### Second rack: - → 1 standard VME crate for MPD electronics read out 5th layer & and layer on assembly table - → 1 LeCroy PS crate for the trigger scintillators - → NIM crate for the trigger coincidence logic - → 1 VXS crate test SSP readout mode MPD Daq and trigger rack 2 ### **Auxiliary Systems** → Low Voltage System Power Supply Unit - Capacity of powering 6 GEM layers - Output Voltage 5V **Power Regulators** Cooling - 8 Required for One layer - Output Voltage 1.25V& 2.5 V Heat Sink Voltage Regulator Low Voltage Power Distribution - → High voltage System - UVa Wiener crate +3 HV Mpod modules - Windows Based Software to control HV - → Gas System - Ar /CO₂ (75/25) for Data taking - UHP N₂ used for HV test - One flow meter to control 2 modules HV hardware in the crate HV Control user Interface # Cosmic data I: Tracking residuals - First analysis of cosmic data has done in Feb 2020 with four layers on the cosmic stand - Tracking residual from this data: $(\sigma_x, \sigma_y) = (133 \ \mu m, 122 \ \mu m)$ About 1M data has been collected and performed tracking analysis ### efficiency Cosmic data I: Track based - o Track based efficiency is the ratio of Did hit to should hit - Above 80% track finding probability with 90% local track based efficiency in most of the module - Two of the 16 modules have apparently low efficiency in the active area # Cosmic data I: Some issues - the same HV on all the modules (except one). diameter they need to operate at higher HV. But for the current data we had Low efficiency in two module: Since, they have slightly different GEM hole - trigger latency (next slide) be shifted toward samples 0-1 instead of samples 2-3: Need re-adjustment of The signal pulses look a bit early relative to the trigger, as the peak appears to - The signal/noise ratio looks a bit marginal: We have 2 or 3modules with high noise that we are working on (probably issue with the FE cards contacts) #### Other issues: - DAQ stability issue: With some adjustment in APV configuration, it seems to be more stable currently but need more fix - Spiky (200-300 ADCs from the baseline) strip channels in groups from time to time in even pedestal runs: Could be fixed by grounding in our setup # Cosmic data II: Latency scan ### Cosmic data II - Major issues: Low efficiency, low signal to noise ratio and low gain for the several modules About 2M cosmic data has been collected and performed tracking analysis - 5th layer had a problem with module 3 during data taking - the first layer shows pretty low gain and efficiency First module of 2nd layer has low efficiency than other modules and the 3rd and 4th modules of 0.8 0.7 0.6 0.5 14 ### Conclusion - Five GEM layers are assembled and tested on the UVa GEM cosmic stand - Sixth layer assembly is in progress - Assembly of the remaining layers is expected to be done within 6 months - Preliminary analysis of the cosmic data tracking with four and five layers on the cosmic stand showing promising results with some fixable issues: low signal to noise ratio, low efficiency etc. # Effect of Latency change