### **GEM commissioning for GEn-RP** experiment (UVa GEMs)

### Thir Gautam Hampton University Jul, 15 2020





#### **Outline**

- SBS GEM trackers for GEn-RP
- Status of the UVa GEM commissioning
- Daq and read out electronics
- Auxiliary systems: Gas System, LV and HV
- Recent cosmic data and the tracking results

# SBS GEM trackers for GEn-RP

## 10 UVA GEM layers

## 2 INFN GEM layers ⇒ 2 INFN + 2 UVa la 2 INFN GEM layers ⇒ 1 IVa layers hehir

- Charge-Exchange (CE) Polarimeter:
  ⇒ 2 INFN + 2 UVa layers, in front of Cu analyzer
- ⇒ 4 UVa layers behind the Cu analyzer

### Proton-Recoil (PR) Polarimeter:

⇒ 2 Identical arms, 2 UVa GEM layers in each arm

60 cm



Electronics

Service Frame

Holding Bar

Spacer sector

Stack of 3 GEM modules (40  $\times$  50 cm<sup>2</sup>)

150<sub>cm</sub>



# **SBS Neutron Polarimeter**



- Charge Exchange (CE)
  Polarimeter
- ■High-momentum forward protons (towards HCAL) after CE np → pn
- 2 INFN GEM planes
- 6 UVa GEM planes
- 1 steel analyzer
- Proton Recoil (PR) Polarimeter
- Low-momentum large-angle recoiling protons after np → np
- Active CH analyzer
- 2 sections, one each side of CE Polarimeter
- Each section has 2 UVa GEM planes and 1 plastic scintillator plane

# SBS GEM detector commissioning (UVa)





- → Prepare/test and place each GEM module
- → Assembly of Aluminum structure and sable trays
- $\rightarrow$  Prepare and test necessary backplanes : Four 12-slot
- eight 5-slot backplanes
- → Cabling: Blue and white HDMI cables
- → Assembly of Auxiliary systems and HV testing



# Status of the UVa GEM layers assembly in EEL 124



- → All 5 layers on the cosmic stand are tested and validated
- → HV test performed regularly.
- → We took cosmic data with all the layers on the cosmic stand
- → Layers 3, 4 and 5 assembly are ready for the experiment
- →Layer 1 and 2 are going to be taken out for some modifications
- → Layer 6 is sitting on the assembly table. It has passed the HV tests and readout electronics tests and ready to go to the cosmic stand



# **GEM Readout Electronics**





#3 Analog+ 1 Digita **HDMI Cables** 







#### 128 analog ch / APV25 **ASIC**

- 3.4 ms trigger latency (analog pipeline)
- at 40 MHz Capable of sampling signal
- Multiplexed analog output (100 kHz readout rate)

Chanel

APV

#### connected to MPDs **HDMI** cables

Rear Tracker

113000

880

70

Front

14000

108

 $\infty$ 

**Tracker** 

#### INFN MPD

Panel

- Arriga GX FPGA 128 MB DDR2-RAM
- Firmware V4.0 (74% resources):

FIR Filter (16 param)

- Zero Suppression
- pedestal subtraction Common mode and
- ≈2 ns trigger time Remote config, resolution

## Daq and readout electronics

MPD Daq and trigger rack 1



#### First rack:

- →Has 2 standard VME crates for the MPD electronics
- →Holding 28 MPDs for 342 APV25 cards
- →Configured to read out 4 layers on the cosmic stand
- →Trigger signal distribution (JLab custom module)
- →Wiener HV power supply crates for the GEM

#### Second rack:

- → 1 standard VME crate for MPD electronics read out 5th layer & and layer on assembly table
- → 1 LeCroy PS crate for the trigger scintillators
- → NIM crate for the trigger coincidence logic
- → 1 VXS crate test SSP readout mode

MPD Daq and trigger rack 2



### **Auxiliary Systems**

→ Low Voltage System

Power Supply Unit

- Capacity of powering 6 GEM layers
- Output Voltage 5V

**Power Regulators** 

Cooling

- 8 Required for One layer
- Output Voltage 1.25V& 2.5 V

Heat Sink Voltage Regulator



Low Voltage Power Distribution

- → High voltage System
- UVa Wiener crate +3 HV Mpod modules
- Windows Based Software to control HV
- → Gas System
- Ar /CO<sub>2</sub> (75/25) for Data taking
- UHP N<sub>2</sub> used for HV test
- One flow meter to control 2 modules



HV hardware in the crate HV Control user Interface

# Cosmic data I: Tracking residuals

- First analysis of cosmic data has done in Feb 2020 with four layers on the cosmic stand
- Tracking residual from this data:  $(\sigma_x, \sigma_y) = (133 \ \mu m, 122 \ \mu m)$

About 1M data has been collected and performed tracking analysis



### efficiency Cosmic data I: Track based

- o Track based efficiency is the ratio of Did hit to should hit
- Above 80% track finding probability with 90% local track based efficiency in most of the module
- Two of the 16 modules have apparently low efficiency in the active area



# Cosmic data I: Some issues

- the same HV on all the modules (except one). diameter they need to operate at higher HV. But for the current data we had Low efficiency in two module: Since, they have slightly different GEM hole
- trigger latency (next slide) be shifted toward samples 0-1 instead of samples 2-3: Need re-adjustment of The signal pulses look a bit early relative to the trigger, as the peak appears to
- The signal/noise ratio looks a bit marginal: We have 2 or 3modules with high noise that we are working on (probably issue with the FE cards contacts)

#### Other issues:

- DAQ stability issue: With some adjustment in APV configuration, it seems to be more stable currently but need more fix
- Spiky (200-300 ADCs from the baseline) strip channels in groups from time to time in even pedestal runs: Could be fixed by grounding in our setup

# Cosmic data II: Latency scan



### Cosmic data II

- Major issues: Low efficiency, low signal to noise ratio and low gain for the several modules About 2M cosmic data has been collected and performed tracking analysis
- 5<sup>th</sup> layer had a problem with module 3 during data taking
- the first layer shows pretty low gain and efficiency First module of 2<sup>nd</sup> layer has low efficiency than other modules and the 3<sup>rd</sup> and 4<sup>th</sup> modules of

0.8 0.7 0.6 0.5



14

### Conclusion

- Five GEM layers are assembled and tested on the UVa GEM cosmic stand
- Sixth layer assembly is in progress
- Assembly of the remaining layers is expected to be done within 6 months
- Preliminary analysis of the cosmic data tracking with four and five layers on the cosmic stand showing promising results with some fixable issues: low signal to noise ratio, low efficiency etc.

# Effect of Latency change

