Impact of chiral hyperonic three-body forces on neutron stars

Isaac Vidaña, INFN Catania

Workshop on ²⁰⁸Pb (e,e'K) & Neutron Stars Hypernuclear Workshop (BJ), May 11th 2020

The Hyperon Puzzle: An Open Problem

Hyperons are expected to appear in the core of neutron stars at $\rho \sim (2-3)\rho_0$ when μ_N is large enough to make the conversion of N into Y energetically favorable.

But

The relieve of Fermi pressure due to its appearance \longrightarrow EoS softer \longrightarrow reduction of the mass to values incompatible with observation

Observation of

$$\sim 2 M_{\odot} NS \longrightarrow$$
 Any reliable EoS of
dense matter should
predict $M_{max} [EoS] > 2M_{\odot}$

Can hyperons be present in the interior of neutron stars in view of this new constraint ?

Possible Solutions to the Hyperon Puzzle

YN & YY

• YY vector meson repulsion

 ϕ meson coupled only to hyperons yielding strong repulsion at high ρ

• Chiral forces

YN from χEFT predicts A s.p. potential more repulsive than those from meson exchange

Hyperonic TBF

Natural solution based on the known importance of 3N forces in nuclear physics

Quark Matter

Phase transition to deconfined QM at densities lower that hyperon threshold

To yield $M_{\text{max}} > 2M_{\odot}$ QM should be

- significantly repulsive to guarantee a stiff EoS
- attractive enough to avoid reconfinement

Is there also a Δ isobar puzzle ?

Drago et al. (2014) & other authors have studied in the context of RMF models the role of the Δ isobar in neutron star matter & its interplay with hyperons

- Constraints from L indicate an early appearance of Δ isobars in neutron stars matter at ~ 2-3 ρ_0 (same range as hyperons)
- Appearance of Δ isobars modify the composition & structure of hadronic stars
- M_{max} is dramatically affected by the presence of Δ isobars

If Δ potential is close to that indicated by π -, e-nucleus or photoabsortion nuclear reactions then EoS is too soft $\longrightarrow \Delta$ puzzle similar to the hyperon one

Short Summary of the Talk

- Study of the effects of NNΛ force on neutron stars
 To such end EoS & NS structure derived within the BHF approach using:
 - NN at N³LO in χ EFT including Δ isobar in intermediate states of NN scattering
 - NNN at N²LO in χEFT
 - NΛ from meson-exchange (Nijmegen group). Weak point of the work
 - NNA derived by the Juelich-Munich-Bonn group in χ EFT at N²LO
- \diamond Inclusion of NNA force improves description of heavy hypernuclei
- Inclusion of NNA force leads to an EoS stiff enough such that he resulting NS maximum mass is compatible with current observations but the model contains only N, leptons & Λ's
- We have NOT SOLVED the hyperon puzzle but have taken an additional step towards its solution

In collaboration with: D. Logoteta & I. Bombaci (University of Pisa)

For details see:

EPJA 55, 207 (2019)

NN interaction

- Local chiral potential derived in coordinate space
- ♦ A gaussian regulator for short range contributions

$$\frac{1}{\pi^{3/2} R_s^3} \exp\left[-\frac{r^2}{R_s^2}\right], \ R_s = 0.7 fm$$

♦ Long range contributions regularized with

$$1 - \left(\left(\frac{r}{R}\right)^6 \exp\left(\frac{2r}{R_I} - 2\right) + 1\right)^{-1}, \quad R_I = 1 fm$$

 ♦ Operatorial structure similar to the Av18 (but not the same)

Piraulli et al., PRC 94, 054007 (2016)

NNN interaction

- \diamond First TNF contribution at
- $\diamond \Delta$ isobar included
- \diamond Gaussian regulator used

$$\frac{1}{\pi^{3/2} R_s^3} \exp\left[-\frac{r^2}{R_s^2}\right], \ R_s = 0.7 \, fm$$

- c_1, c_3, c_4 fixed from the two-body interaction
- $c_E \& c_D$ fixed from observables of few body nuclear systems (³H) or to reproduce the saturation point (this

Piraulli et al., PRC 94, 054007 (2016)

Nuclear Matter EoS

PNM

SNM

♦ Significant improvement of SNM saturation point due to TNF

 $\Rightarrow \text{ Explicit inclusion of the} \\ \Delta \text{ isobar diminishes the} \\ \text{strength of the TNF} \\ \text{needed to obtain a good} \\ \text{saturation point} \end{aligned}$

Nuclear Matter Properties at Saturation

	Model	$ ho_0({ m fm}^{-3})$	E/A (MeV)	E_{sym} (MeV)	L (MeV)	K_{∞} (MeV)
	$N3LO\Delta + N2LO\Delta 1$	0.171	-15.23	35.39	76.0	190
	$N3LO\Delta + N2LO\Delta 2$	0.176	-15.09	36.00	79.8	176
Δ-less	N3LO+N2LO(500)	0.135	-12.12	25.89	38.3	153
	N3LO+N2LO(450)	0.156	-14.32	29.20	39.8	205

Nuclear Symmetry Energy

Good agreement with e x p e r i m e n t a l constraints from Isobaric Analog States & neutron skin thinkness

NS EoS & Structure at N³LO Δ +N²LO Δ

$N\Lambda$ interaction

 \Rightarrow NY & YY interactions in χ EFT derived by the Juelich-Bonn-Munich group

• NY at

LO: Polinder et al., NPA 779, 244 (2006)
 NLO: Haidenbauer et al., NPA 915, 24 (2013)
 Haidenbauer et al., arXiv:1906.11681

• YY at NLO: Haidenbauer et al., NPA 954, 273 (2016)

WEAK POINT OF THE PRESENT WORK: unfortunately at the time this work was done we did not have at our disposal this interaction and, therefore, instead we used a NY mesonexchange interaction from the Nijmegen group (NSC97a & NSC97f)

$NN\Lambda$ interaction

 $(\pi \text{ exchange expected to be dominant, heavy meson} (K,\eta)$ exchange absorved into contact terms)

- First contributions to NNY appear in χEFT at N²LO
- ♦ Leading terms at $N^{2}LO$
 - ✓ Three-baryon contact terms
 - ✓ One & two-meson exchange
- ♦ LEC estimated through decouplet saturation. Only one LEC H' remains a free parameter. A value of H'=+-1/ f_{π} where f_{π} =93 MeV has been considered by Petschauer et al.
- ♦ In this work $H'=\beta/f_{\pi}^2$ with β a parameter fixed to reproduce $U_{\Lambda}(k=0) \sim -28 30$ MeV in SNM at saturation \longrightarrow Models NNΛ₁ & NNΛ₂
- ♦ A non-local regulator $\exp(-(p^4+p'^4)/\Lambda^4)$ with Λ =500 MeV is used

Petschauer et al., PRC93, 014001 (2016)

Effect of NNA interaction on hypernuclei

Before analyzing the effect of NNA interaction on NS we consider its role on hypernuclear strucure. To such end

A perturbative many-body approach is employed to obtain the Λ self-energy in finite nuclei from which the Λ s.p. bound states can be obtained

$$G_{NM} = V + V \left(\frac{Q}{E}\right)_{NM} G_{NM} \qquad \longrightarrow \qquad G_{FN} = G_{NM} + G_{NM} \left[\left(\frac{Q}{E}\right)_{FN} - \left(\frac{Q}{E}\right)_{NM} \right] G_{FN}$$

BHF approximation to the Λ irreducible self-energy in finite nuclei

NNA interaction within the BHF approach

The NNA interaction can be introduced in our BHF approach by adding an effective densitydependent NA force to the NA twobody one when solving the Bethe-Goldstone equation

$$W_{B_iB_j}\left(\vec{r}_{ij}\right) = Tr_{(\tau_k,\sigma_k)}\int W_3\left(\vec{r}_i,\vec{r}_j,\vec{r}_k\right)n\left(\vec{r}_i,\vec{r}_j,\vec{r}_k\right)d^3\vec{r}_k$$

 $W_3(\vec{r}_i, \vec{r}_j, \vec{r}_k)$: genuine TBF $n(\vec{r}_i, \vec{r}_j, \vec{r}_k)$: three-body correlation function

N.B.: Petschauer et al., have derived this effective density-dependent NA force allowing a straightforward inclusion of the NNL force in our BHF approach

Effect of NNA interaction on hypernuclei

	⁴¹ Ca	$^{91}_{\Lambda}$ Zr	²⁰⁹ Pb
NSC97a	23.0	31.3	38.8
NSC97a+NNA1	14.9	21.1	26.8
NSC97a+NNA ₂	13.3	19.3	24.7
NSC97e	24.2	32.3	39.5
NSC97e+NNA ₁	16.1	22.3	27.9
NSC97e+NNA ₂	14.7	20.7	26.1
Exp.	18.7(1.1)*	23.6(5)	26.9(8)

 Λ separation energy in ${}^{41}{}_{\Lambda}$ Ca, ${}^{91}{}_{\Lambda}$ Zr & ${}^{209}{}_{\Lambda}$ Pb

- ♦ We consider only hypernuclei described as a closed shell nuclear core + a Λ sitting in a s.p. state. Comparison with the closest hypernucleus for which exp. data is available
- ♦ Inclusion of NNA improves the agreement with data for ${}^{91}_{\Lambda}$ Zr & ${}^{209}_{\Lambda}$ Pb.
- \therefore NNA predict too much repulsion in the case ${}^{41}{}_{\Lambda}$ Ca & lighter hypernuclei
- ♦ No refit of any parameter has been done to perform these calculations

^{*} Taken from Pile et al., PRL 66, 2585 (1991). Not included in the recent Gal et al., RMP 88, 035004 (2016)

Λ BHF single-particle potential in SNM at ρ_0

Neutron star matter EoS & Composition

Only n, p, e⁻, μ^- & Λ included

- ✓ First exploratory work. We are interested on the role of NNA
- ✓ More complete study requires the inclusion of other hyperons (work on progress)

- \diamond The effect of NNA interaction is twofold:
 - ✓ Shift the onset of the Λ to slightly larger baryon density
 - ✓ Strong reduction of the amount of ∧'s at large baryon densities with the consequent stiffening of the EoS compared to the case in which the NNA is not included —> important consequences for NS mass (M_{max} increases)

Neuron star Properties

	$M_{max}(M_{\odot})$	<i>R</i> (km)	$n_c ({\rm fm}^{-3})$
Nucleonic	2.08	10.26	1.15
NSC97a	1.31	10.60	1.40
NSC97a+NN Λ_1	1.96	9.80	1.30
NSC97a+NN Λ_2	1.97	9.87	1.28
NSC97e	1.54	10.81	1.18
NSC97e+NN Λ_1	2.01	10.10	1.20
NSC97e+NN Λ_2	2.02	10.15	1.19

NS M_{max} compatible with the largest NS observed

But

- We have ignored the presence of other hyperons in the NS interior that could change this conclusion
- ✓ Hypothetical repulsive NNY, NYY & YYY forces could lead to a similar conclusion

In view of this we CANNOT say that we have solved the hyperon puzzle

A comparison with QMC calculations

Lonardoni et al., PRL 114, 092301 (2016)

This work

- \Rightarrow NS matter described as mixture of neutrons & Λ's in β-equilibrium
- Phenomenological interaction models: Av8'+UIX (nn,nnn) & Bodmer-Usmani (NΛ) potential, NNΛ (2π exchange + phenomenological repulsive term)
- ♦ The only NNA able to give $2M_{\odot}$ lead to the total disappearance of A in NS, but this in fact just pure neutron matter

- ↔ NS matter described as a mixture of n, p, e⁻, μ⁻ & Λ's in β-equilibrium
- \Rightarrow χEFT (NN, NNN, NNΛ) + mesonexchange (NY)
- ♦ Even if the concentration of Λ's is strongly reduced they are still present in the interior of a $2M_{\odot}$ NS

Summary & Conclusions (again)

 \diamond Study of the effects of NNA force on neutron stars

To such end EoS & NS structure derived within the BHF approach using:

- NN at N³LO in χ EFT including Δ isobar in intermediate states of NN scattering
- NNN at N²LO in χEFT
- NΛ from meson-exchange (Nijmegen group). Weak point of the work
- NNA derived by the Juelich-Munich-Bonn group in χ EFT at N²LO
- \diamond Inclusion of NNA force improves description of heavy hypernuclei
- Inclusion of NNA force leads to an EoS stiff enough such that he resulting NS maximum mass is compatible with current observations but the model contains only N, leptons & A's
- We have NOT SOLVED the hyperon puzzle but have taken an additional step towards its solution

\diamond You for your time & attention

BACKUP SLIDES

Finite nucleus Λ self-energy in the BHF approximation

Using G_{FN} as an effective YN interaction, the finite nucleus Λ self-energy is given as sum of a 1st order term & a 2p1h correction

 \diamond <u>1st order term</u>

This contribution is real & energy-independent

N.B.: most of the effort is on the basis transformation $|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})J\rangle \rightarrow |KLqLSJTM_{T}\rangle$

\Rightarrow <u>2p1h correction</u>

This contribution is the sum of two terms:

• The first, due to the piece $G_{NM}(Q/E)_{FN}G_{NM}$, gives rise to an imaginary energy-dependent part in the Λ self-energy

$$\begin{array}{c}
\Lambda \\
 & G_{NM} \\
 & \Lambda, \Sigma \\
 & G_{NM} \\
\end{array}$$

$$\begin{array}{c}
\left(\left(\underline{Q} \\ \underline{E} \right)_{FN} - \left(\left(\underline{Q} \\ \underline{E} \right)_{NM} \right) \\
\end{array}$$

$$\begin{aligned} \mathcal{W}_{2p1h}(k_{\Lambda},k'_{\Lambda},l_{\Lambda},j_{\Lambda},\omega) \\ &= -\frac{\pi}{2j_{\Lambda}+1} \sum_{n_{h}l_{h}j_{h}t_{z_{h}}} \sum_{\mathcal{L}LSJ} \sum_{\mathcal{Y}'=\Lambda\Sigma} \int dq q^{2} \int dKK^{2}(2\mathcal{J}+1) \\ &\times \langle (k'_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}|G|K\mathcal{L}qLSJ\mathcal{J}TM_{T} \rangle \\ &\times \langle K\mathcal{L}qLSJ\mathcal{J}TM_{T}|G|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J} \rangle \\ &\times \delta \left(\omega + \varepsilon_{h} - \frac{\hbar^{2}K^{2}}{2(m_{N}+m_{Y'})} - \frac{\hbar^{2}q^{2}(m_{N}+m_{Y'})}{2m_{N}m_{Y'}} - m_{Y'} + m_{\Lambda} \right) \end{aligned}$$

From which can be obtained the contribution to the real part of the selfenergy through a dispersion relation

$$\mathcal{V}_{2p1h}^{(1)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} d\omega' \frac{\mathcal{W}_{2p1h}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega')}{\omega'-\omega}$$

• The second, due to the piece $G_{NM}(Q/E)_{NM}G_{NM}$, gives also a real & energy-independent contribution to the Λ self-energy and avoids double counting of Y'N states

$$\begin{aligned} \mathcal{V}_{2p1h}^{(2)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda}) \\ &= \frac{1}{2j_{\Lambda}+1} \sum_{n_{h}l_{h}j_{h}t_{z_{h}}} \sum_{\mathcal{L}LSJ} \sum_{\mathcal{Y}'=\Lambda\Sigma} \int dq q^{2} \int dK K^{2}(2\mathcal{J}+1) \\ &\times \langle (k_{\Lambda}'l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}|G|K\mathcal{L}qLSJ\mathcal{J}TM_{T} \rangle \\ &\times \langle K\mathcal{L}qLSJ\mathcal{J}TM_{T}|G|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J} \rangle \\ &\times \mathcal{Q}_{Y'N} \left(\Omega - \frac{\hbar^{2}K^{2}}{2(m_{N}+m_{Y'})} - \frac{\hbar^{2}q^{2}(m_{N}+m_{Y'})}{2m_{N}m_{Y'}} - m_{Y'}+m_{\Lambda} \right)^{-1} \end{aligned}$$

Summarizing, in the BHF approximation the finite nucleus Λ selfenergy is given by:

$$\Sigma_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega)=\mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega)+i\mathcal{W}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega)$$

with

$$\mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega) = \mathcal{V}_{1}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda}) + \mathcal{V}_{2p1h}^{(1)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega) - \mathcal{V}_{2p1h}^{(2)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda})$$

$$\mathcal{W}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega) = \mathcal{W}_{2p1h}(k_{\Lambda},k'_{\Lambda},l_{\Lambda},j_{\Lambda},\omega)$$

Λ single-particle bound states

 Λ s.p. bound states can be obtained using the real part of the Λ self-energy as an effective hyperon-nucleus potential in the Schoedinger equation

$$\sum_{i=1}^{N_{max}} \left[\frac{\hbar^2 k_i^2}{2m_{\Lambda}} + \mathcal{V}_{l_{\Lambda} j_{\Lambda}}(k_n, k_i, \omega = \varepsilon_{l_{\Lambda} j_{\Lambda}}) \right] \Psi_{i l_{\Lambda} j_{\Lambda} m_{j_{\Lambda}}} = \varepsilon_{l_{\Lambda} j_{\Lambda}} \Psi_{n l_{\Lambda} j_{\Lambda} m_{j_{\Lambda}}}$$

solved by diagonalizing the Hamiltonian in a complete & orthonormal set of regular basis functions within a spherical box of radius R_{box}

$$\Phi_{nl_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}(\vec{r}) = \langle \vec{r} | k_n l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}} \rangle = N_{nl_{\Lambda}}j_{l_{\Lambda}}(k_nr)\psi_{l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}(\theta,\phi)$$

- $N_{nl\Lambda}$ \longrightarrow normalization constant
- $N_{max} \longrightarrow maximum$ number of basis states in the box
- $j_{j\Lambda}(k_n r) \longrightarrow$ Bessel functions for discrete momenta $(j_{j\Lambda}(k_n R_{box})=0)$
- $\psi_{1\Lambda j\Lambda m j\Lambda}(\theta,\phi)$ \longrightarrow spherical harmonics the including spin d.o.f.
- $\Psi_{nl\Lambda j\Lambda m j\Lambda} = \langle k_n l_\Lambda j_\Lambda m_{j\Lambda} | \Psi \rangle$ \longrightarrow projection of the state $|\Psi\rangle$ on the basis $|k_n l_\Lambda j_\Lambda m_{j\Lambda}\rangle$

N.B.: a self-consistent procedure is required for each eigenvalue