% TRIUMF

No-core shell model for hypernuclei

Workshop on ²⁰⁸Pb (e,e'K) and neutron stars

May 11, 2020

Petr Navratil

TRIUMF

Collaborators:

D. Gazda (NPI Rez), R. Roth (TU Darmstadt), R. Wirth (MSU), Takayuki Miyagi (TRIUMF)

1

cover

Ŭ U

2020-05-12

First principles or ab initio nuclear theory

First principles or *ab initio* nuclear theory – what we do at present

Ab initio

•

- ♦ Degrees of freedom: Nucleons
- \diamond All nucleons are active
- ♦ Exact Pauli principle
- Realistic inter-nucleon interactions
 Accurate description of NN (and 3N) data
- ♦ Controllable approximations

Chiral Effective Field Theory

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

Nucleon-Hyperon Interaction in chiral EFT

Hyperon–nucleon interaction at next-to-leading order in chiral effective field theory

J. Haidenbauer^a, S. Petschauer^b, N. Kaiser^b, U.-G. Meißner^{c,a,*}, A. Nogga^a, W. Weise^{b,d}

Henk Polinder^{a,*}, Johann Haidenbauer^a, Ulf-G. Meißner^{a,b}

LO contacts

LO one-boson exchange

NLO

Rapid developments in nuclear ab initio calculations

Oxygen chain with interactions from chiral EFT

Conceptually simplest *ab initio* method: No-Core Shell Model (NCSM)

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

(A)
$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

(A)
$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

	Progress in Particle and Nuclear Physics 69 (2013) 131-181	
	Contents lists available at SciVerse ScienceDirect	Transmission in Colombia
	Progress in Particle and Nuclear Physics	and the second se
ELSEVIER	journal homepage: www.elsevier.com/locate/ppnp	

Review *Ab initio* no core shell model Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

The In-Medium Similarity Renormalization Group:

A novel ab initio method for nuclei

In-Medium Similarity Renormalization Group – Flow equation

CrossMark

SRG transformations of nuclear forces speed up convergence

PHYSICAL REVIEW C 101, 014318 (2020)

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil⁰,^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri⁰,^{4,§} and T. Duguet^{1,5,||}

Binding energies of light and selected medium mass nuclei from chiral NN+3N forces

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM
 - Medium mass nuclei Self-Consistent Green's Function method

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

PHYSICAL REVIEW C 101, 014318 (2020)

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil⁰,^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri⁰,^{4,§} and T. Duguet^{1,5,∥}

Binding energies of light and selected medium mass nuclei from chiral NN+3N forces

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM
 - Medium mass nuclei MBPT(3) Takayuki Miyagi

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

 Flexible approach capable performing exact calculations for few-nucleon systems and accurate calculations for nuclei & hypernuclei with A≤25

p (uud): m_p=938.3 MeV; n (udd): m_n=939.6 MeV, Λ (uds): m_Λ=1115.7 MeV; Σ (uus,uds,dds): m_Σ=1189.4 MeV

A

 Flexible approach capable performing exact calculations for few-nucleon systems and accurate calculations for nuclei & hypernuclei with A≤25

p (uud): m_p=938.3 MeV; *n* (udd): m_n=939.6 MeV, Λ (uds): m_Λ=1115.7 MeV; Σ (uus,uds,dds): m_Σ=1189.4 MeV

15

■ Flexible approach capable performing exact calculations for few-nucleon systems and accurate calculations for nuclei & hypernuclei with A≤25

p (uud): m_p=938.3 MeV; n (udd): m_n=939.6 MeV, Λ (uds): m_Λ=1115.7 MeV; Σ (uus,uds,dds): m_Σ=1189.4 MeV

■ Flexible approach capable performing exact calculations for few-nucleon systems and accurate calculations for nuclei & hypernuclei with A≤25

p (uud): m_p=938.3 MeV; n (udd): m_n=939.6 MeV, Λ (uds): m_Λ=1115.7 MeV; Σ (uus,uds,dds): m_Σ=1189.4 MeV

Similarity renormalization group transformation applied consistently up to the three-baryon level to improve the model-space convergence

⁶He

⁵He

⁶He

⁸He

⁷He

⁹He

 S_n [MeV]

Light neutron-rich hypernuclei from the importance-truncated no-core shell model Roland Wirth^{*}, Robert Roth $\frac{7}{14e} + \frac{8}{14e} + \frac{9}{14e} + \frac{10}{10} + \frac{11}{14e} + \frac{8}{14e} + \frac{9}{16e} + \frac{10}{14e} + \frac{11}{14e} + \frac{8}{14e} + \frac{9}{14e} + \frac{10}{14e} + \frac{11}{14e} + \frac{11$

⁷Li

⁸Li

⁹Li

 Neutron separation energies stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei

¹⁰He

 Neutron drip lines in the helium and lithium isotopic chains not changed by the addition of a hyperon 17

 ^{10}Li

 ^{11}Li

Chiral N⁴LO NN + NLO YN SRG transformed at two-baryon level

Jacobi-coordinate NCSM

STAR collaboration larger ${}^{3}H_{\Lambda}$ binding energy (0.13 -> 0.41 MeV)

YN NLO19a,b,c fitted to obtain the larger value

 ${}^{4}\text{He}_{\Lambda}(0^{+}), \, {}^{4}\text{He}_{\Lambda}(1^{+}) \text{ and } {}^{7}\text{Li}_{\Lambda} \text{ still well described}$

Conclusions

- *Ab initio* calculations of nuclear structure and reactions becoming feasible beyond the lightest nuclei
 - Make connections between the low-energy QCD, many-body systems, and nuclear astrophysics
- Ab initio nuclear theory essential for precision applications such as tests of fundamental symmetries
 - Quenching of g_A
 - Double beta decay matrix elements
 - Isospin mixing correction δ_c
 -
- Initial applications of ab initio methods to p-shell hypernuclei
- It is feasible to extend the reach and precision of *ab initio* hypernuclei calculations in a near future

In synergy with experiments, ab initio nuclear theory is the right approach to understand low-energy properties of atomic nuclei

∂TRIUMF

Thank you! Merci!

Discovery, accelerated