The elementary reaction for electroproduction of hypernuclei in DWIA

Workshop on $^{208}Pb(e,e'K^+)$ and neutron stars

Petr Bydžovský Nuclear Physics Institute, Řež, Czech Republic

- production of hypernuclei by virtual photons (one-photon approximation) $\gamma_{\rm V}+A\longrightarrow H+K^+$
- in impulse approximation $\langle \Psi_{\rm H} | \sum_{j} \chi_{\gamma} \chi_{\rm K}^* \mathcal{J}_{j}^{\mu} | \Psi_{\rm A} \rangle$

 \mathcal{J}_{j}^{μ} – elementary production current on the j^{th} proton

- see also talk of Omar Benhar

The elementary production $e + p \longrightarrow e' + A + K^+$

- one-photon approximation: $\gamma_v + p \longrightarrow \Lambda + K^+$
- open-strangeness production in the 3rd resonance region ($\sqrt{s_{thr}} = 1.61 \text{ GeV}$) \rightarrow a complex reaction mechanism: many (missing) resonances, background
- open channels coupled via the meson-baryon FSI
 → unitarity: multi-channel ↔ single-channel approach
- isobar approach a phenomenological description in the resonance region
 → an effective Lagrangian with baryon, meson, and photon fields
 - ightarrow the tree-level approximation
 - \rightarrow a structure of hadrons form factors
- single-channel analysis (FSI neglected)

 → isobar model: Adelseck-Saghai (90), Williams-Ji-Cotanch (92), Saclay-Lyon (96), Kaon-MAID (99), Gent isobar (01), Maxwell (07)
 → Regge-plus-resonance model (hybrid isobar-Regge description): Gent group: RPR-2007, RPR-2011
- many experimental data points after 2004 more than 7000 data

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Isobar model

D. Skoupil, P. Bydžovský, Phys. Rev. C 93, 025204 (2016); 97, 025202 (2018)

• single-channel approach – final-state interactions not included

- the amplitude for $\Lambda K \longrightarrow \Lambda K$ not known experimentaly
- violation of unitarity
- fitted coupling constants can include a part of the FSI effects
- \blacktriangleright energy dependent widths of $N^* \rightarrow$ a partial restoration of unitarity
- effective hadron Lagrangian
 - \blacktriangleright ground-state hadrons, N*, Y*, and K* resonances \rightarrow couplings
 - high-spin states: $N^*(3/2, 5/2)$ and $Y^*(3/2)$
 - a set of relevant resonances has to be selected in the analysis
 - hadron form factors included in a gauge-invariant way (a contact term)
 - tree-level expansion: s-channel exchanges (N*- resonant contributions);
 t- and u-channel exchanges and a contact term (non resonant terms)
 - $g_{KN\Lambda}$ and $g_{KN\Sigma}$ are constrained by SU(3)_f symmetry
 - ▶ free parameters are fitted to data (\approx 25 30 param. \Leftrightarrow 3400 data points)

イロト 不得下 イヨト イヨト

Isobar model

considered resonances

- ▶ t-channel: $K^*(892)$, $K_1(1272)$ with the vector and tensor couplings
- ▶ s-channel: N* with mass ≤ 2 GeV and spin ¹/₂, ³/₂, ⁵/₂ motivated by the Bayesian analysis (RPR) [L.De Cruz etal, Phys.Rev.C86(2012)015212] and five more states from PDG
- missing resonances $D_{13}(1875)$, $P_{11}(1880)$, $P_{13}(1900)$
- u-channel: nine Y* with spin $\frac{1}{2}$ and $\frac{3}{2}$ and mass < 2 GeV
- hadron form factors:

dipole, multidipole, Gauss, and multidipole-Gauss

- about 30 free parameters
 - gκλΝ,
 gκΣΝ
 gκΣΝ
 - G_V and G_T for K^* and K_1
 - ▶ spin- $\frac{1}{2}$ resonances (N^* or Y^*) → 1 parameter
 - spin- $\frac{3}{2}$ and $\frac{5}{2}$ resonances $\rightarrow 2$ parameters
 - 2 cut-off parameters for the hadron form factors (resonant, background)

Isobar model

• experimental data for W < 2.36 GeV

- cross sections: CLAS 2005, 2010; LEPS; old data (Adelseck,Saghai)
- hyperon polarization: CLAS 2010
- beam asymmetry: LEPS
- all together \approx 3400 data points
- experimental uncertainty used in fitting: $\Delta \sigma_{tot} = \sqrt{\Delta \sigma_{stat}^2 + \Delta \sigma_{syst}^2}$

• solutions: BS1 and BS2 for photoproduction and BS3 for electroproduction

- selected resonances in model BS1: $S_{11}(1535)$, $S_{11}(1650)$, $F_{15}(1680)$, $P_{13}(1720)$, $F_{15}(1860)$, $D_{13}(1875)$, $P_{13}(1900)$, $F_{15}(2000)$; $\Lambda(1520)$, $\Sigma(1660)$, $\Sigma(1750)$, $\Lambda(1800)$, $\Lambda(1890)$, $\Sigma(1940)$; $K^*(892)$, $K_1(1270)$
- hadron form factors: multidipole with $\Lambda_{bgr} = 1.88$ GeV and $\Lambda_{res} = 2.74$ GeV

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Results with isobar models for photoproduction [D.Skoupil, P.Bydžovský Phys.Rev.C97,025202(2018)]

P. Bydžovský (NPI Řež)

May 11, 2020 6 / 19

Results at small angles are important for hypernucleus calculations

Results for electroproduction

Predictions for electroproduction of hypernuclei

DWIA calculations and the data [F.Garibaldi et al, Phys. Rev. C 99, 054309 (2019)]

Predictions for electroproduction of hypernuclei

DWIA calculations and the data [F.Garibaldi et al, Phys. Rev. C 99, 054309 (2019)]

Electroproduction versus photoproduction DWIA results

• the unpolarized laboratory cross section in electroproduction

$$\frac{d^{3}\sigma}{dE'_{e}\,d\Omega'_{e}\,d\Omega_{K}} = \Gamma\left[\frac{d\sigma_{\mathsf{T}}}{d\Omega_{\mathsf{K}}} + \epsilon \, \frac{d\sigma_{\mathsf{L}}}{d\Omega_{\mathsf{K}}} + \epsilon \, \frac{d\sigma_{\mathsf{TT}}}{d\Omega_{\mathsf{K}}} + \sqrt{2\epsilon(1+\epsilon)} \, \frac{d\sigma_{\mathsf{TL}}}{d\Omega_{\mathsf{K}}} \right]$$

- d σ_T dominates for a very small Q^2 (an almost real transversal photon)
- JLab experiment E94-107: $E_{\gamma}^{lab} = 2.21 \text{ GeV}, \ \theta_{Ke}^{lab} = 6^{\circ}, \ \theta_{K\gamma}^{lab} = 1.8^{\circ}, \ \epsilon = 0.703, \text{ and } Q^2 = 0.0644 \ (GeV/c)^2 \rightarrow \text{photoproduction }?$

 $^{12}C(e, e'K^+)^{12}_{\Lambda}B$ with the Saclay-Lyon A model:

Е	J_{H}^{P}	$\theta_{K\gamma}^{LAB}$	$d\sigma$	$d\sigma_T$	$\epsilon d\sigma_L$	$\epsilon d\sigma_{TT}$	$\sqrt{2\epsilon(1+\epsilon)} d\sigma_{TL}$	$d^3\sigma$
0.0	1^{-}	1.8	36.768	42.505	0.251	0.040	-6.028	0.640
0.116	2-	1.8	127.898	148.198	1.083	0.364	-21.747	2.227

ightarrow the transverse-longitudinal interference terms contribute more than 10%

Regge-plus-resonance model for KA photoproduction

[P. Bydžovský and D. Skoupil, Phys. Rev. C 100, 035202 (2019)]

Invariant amplitude

 $\mathcal{M} = \mathcal{M}_{bgr}(Regge) + \mathcal{M}_{res}(isobar) + \mathcal{M}_{int}(gauge \ invariance)$

 the resonant part: exchanges of N* in s-channel like in the isobar model – selected N*:

 $S_{11}(1535), S_{11}(1650), D_{15}(1675), F_{15}(1680), D_{13}(1700), F_{15}(1860), P_{11}(1880), D_{13}(1875), P_{13}(1900), D_{13}(2120)$

- regularization of the resonant part: multidipole hadron form factors
- the contact term: the gauge-restoration method by Haberzettl et al, Phys.Rev.C 92, 055503 (2015) \rightarrow the proton exchange is not included.

Regge-plus-resonance model

• the background part – exchanges of degenerate K and K* Regge trajectories

$$\mathcal{M}_{bgr} = \mathcal{P}_{Regge}^{K}(s,t) \times \beta_{K} + \mathcal{P}_{Regge}^{K^{*}}(s,t) \times \beta_{K^{*}}$$

the Regge propagator with the rotating phase

$$\mathcal{P}_{Regge}^{\mathsf{x}}(\boldsymbol{s},t) = \frac{(\boldsymbol{s}/\boldsymbol{s}_{0})^{\alpha_{\mathsf{x}}(t)}}{\sin\pi\,\alpha_{\mathsf{x}}(t)} \, \frac{\pi\,\alpha_{\mathsf{x}}'\,\mathrm{e}^{-i\pi\,\alpha_{\mathsf{x}}(t)}}{\Gamma(1+\alpha_{\mathsf{x}}(t))} \,, \quad \alpha_{\mathsf{x}}(t) = \alpha_{\mathsf{x}}'(t-m^{2}), \quad \mathsf{x} = \mathsf{K}, \,\mathsf{K}^{*}$$

• only 3 parameters for \mathcal{M}_{bgr} – fixed mainly by high-energy data (W>2.6 GeV)

Results with Regge-plus-resonance model

[P. Bydžovský and D. Skoupil, Phys. Rev. C 100, 035202 (2019)]

Results for photoproduction with RPR models

P. Bydžovský (NPI Řež)

Results for photoproduction with RPR at small angles

Summary

- new isobar models BS1, BS2, and BS3 were constructed using a consistent description of the resonances with spin 3/2 and 5/2;
- Y*(3/2) resonances (not considered in older models, except for SLC) were found to play important role in description of the background part of amplitude;
- the selected set of N* agrees well with that chosen in the Bayesian analysis with the Regge-plus-resonance model;
- we confirm importance of the missing resonances $P_{13}(1900)$ and $D_{13}(1875)$ for description of data in the $K^+\Lambda$ channel;
- new fits with the RPR model provide good description of data in the resonance region and above this region (CLAS 2010);
- predictions of the isobar and RPR models for the cross sections at small kaon angles differ – the data still cannot fully fix the models;
- the DWIA calculations of hypernucleus cross sections are sensitive to behaviour of the elementary amplitude at small θ_K and Q² close zero;

- 4 同 6 4 日 6 4 日 6

- the new DWIA calculations of the cross sections for electroproduction of ${}^{9}_{\Lambda}$ Li, ${}^{12}_{\Lambda}$ B, and ${}^{16}_{\Lambda}$ N are in a reasonable agreement with experimental data from JLab [F.Garibaldi et al, Phys. Rev. C 99, 054309 (2019)];
- different isobar models for the elementary electroproduction, SLA and BS3, give similar results (30 40% difference);
- the calculations mostly underpredicts (by 10 60 %) the cross sections for ${}^{9}_{\Lambda}$ Li and ${}^{12}_{\Lambda}$ B (could be attributed to elementary production), however, they overpredict by 5 30 % the cross sections for ${}^{16}_{\Lambda}$ N;

Outlook

- testing the isobar and Regge-plus-resonance models in the DWIA calculations (small θ_K) utilizing data on hypernucleus production;
- using the isobar model in photoproduction of K^0 on the neutron (deuteron data).

イロト 不得 トイヨト イヨト 二日

Thank you !

イロト イヨト イヨト イヨト