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MOTIVATION

? Understanding hypernuclear dynamics is a fundamental problem, with
important implications for the understanding of neutron star properties

? Experimental studies of the (e, e′K+) reaction have the potential to
provide information needed to improve the available models of
interactions involving nucleons and hyperons, and shed light on issues
such as isospin dependence and the role of thee-body forces

? The dynamical information extracted from experimental data must be
as model independent as posible

? Besides being a good proxy for uniform nuclear matter, 208Pb has been
extensively studied by high resolution (e, e′p) experiments. The data
obtained from these analyses provide the baseline for the determination
of hypernuclear properties
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THE A(e, e′K+)ΛA CROSS SECTION

? Consider the process

e(k) + A(pA)→ e′(k′) +K+(pK) + ΛA(pΛA)

? Cross section (i, j = 1, 2, 3)

dσ ∝ LijW ij

. The lepton tensor Lij is fully specified by the measured electron
kinematical variables

. The tensor W ij , describing the nuclear response, contains all the
information on both nuclear and hypernuclear dynamics
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? Lepton tensor

L =

 η+ 0 −√εLη+

0 η− 0
−√εLη+ 0 εL

 ,

η± =
1

2
(1± ε) , ε =

(
1 + 2

|q|2

Q2
tan2 θe

2

)−1

, εL =
Q2

ω2
ε

? Target response tensor

W ij = 〈0|J iA
†
(q)|F 〉〈F |JjA(q)|0〉 δ(4)(q + p0 − pF )

? Building blocks

|0〉 = |A〉 , J iA =

A∑
n=1

ji(n) , |F 〉 = |K+〉 ⊗ |ΛA〉

. According to the paradigm of nuclear many-body theory, nuclear
and hypernuclear states should be obtained from dynamical
models based on phenomenological microscopic Hamiltonians
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IMPULSE APPROXIMATION AND FACTORIZATION

? At momentum transfer |q|−1 � d , d ∼ 1.5 fm being the average
nucleon-nucleon separation distance in the target nucleus, the beam
particles interact with individual (bound, moving) nucleons

L. YUAN et al. PHYSICAL REVIEW C 73, 044607 (2006)
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FIG. 1. A schematic representation of the (a) mesonic and
(b) electromagnetic production processes.

normal nuclear densities, and this information can serve
as a normalization point, to extrapolate the interaction to
matter-densities found in neutron stars, where mixtures of
nucleons and hyperons could form a stable system [4].

Traditionally, hypernuclei have been produced with sec-
ondary beams of kaons or pions, as shown in Fig. 1(a). Because
the (K−,π−) reaction is exothermic, the three-momentum
transfer to the " can be chosen to be small. In this situation
the cross section to substitution states (i.e., states where
the " acquires the same shell quantum numbers as those
of the neutron which it replaces) is relatively large. On
the other hand, the (π+,K+) reaction has three-momentum
transfers comparable to the nuclear Fermi-momentum, and the
cross section preferentially populates states with high angular
momentum transfers [5,6]. Neither of these two reactions has
significant spin-flip amplitude at forward angles where the
cross sections are experimentally accessible. Thus all these
spectra are dominated by transitions to non-spin-flip states.

Aside from early emulsion experiments, mesonic reaction
spectroscopy of hypernuclei has generally provided hypernu-
clear spectra with energy resolutions !2 MeV. This is due to
the intrinsic resolutions of secondary mesonic beamlines, and
the target thicknesses required to obtain sufficient counting
rates. One previous study did achieve a spectrum resolution of
approximately 1.5 MeV for the "C hypernucleus, using a thin
target and devoting substantial time to data collection [7].

Although, specific hypernuclear states below nucleon emis-
sion threshold can be located within "1 keV by detecting
deexcitation gammas [8,9] in coincidence with a hypernuclear
production reaction, such experiments become more difficult
in heavier systems due to the number of transitions which
must be unambiguously assigned in an unknown spectrum. It
should be noted however, that resolutions of a few hundred keV
are also sufficient for many studies, since reaction selectivity
and angular dependence potentially allows extraction of the
spectroscopic factors to specific states [10]. A reaction also
provides a full spectrum of states which can be clearly
identified with a specific hypernucleus. Indeed the excitation
strength of the spectrum is of interest, as the impulse
approximation assumes that the reaction proceeds through
the interaction of the incident projectile with a nucleon in
a single-particle state within the nuclear medium. Thus as
an example apropos to the experiment reported here, if the
theoretical spectrum does not reproduce the experimental
one, it is possible that propagator renormalization within the
medium could be significant [11], requiring a modification of
the single-particle picture of the reaction.

Electroproduction of hypernuclei is illustrated by Fig. 1(b).
Electroproduction traditionally has been used for precision
studies of nuclear structure, as the exchange of a photon can be
accurately described by a first order perturbation calculation.
In addition, electron beams have excellent spatial and energy
resolutions. Previously, electron accelerators had poor duty
factors, significantly impairing high singles rate, coincidence
experiments. However, modern, continuous beam accelerators
have now overcome this limitation, and although the cross
section for nuclear kaon electroproduction is smaller than
that for hypernuclear production by the (π,K) reaction for
example, this can be compensated by increased beam intensity.
Targets can be physically small and thin (10–100 mg cm−2),
allowing studies of almost any isotope. The potential result
for (e, e′K+) experiments, is an energy resolution of a few
hundred keV with reasonable counting rates up to at least
medium weight hypernuclei [12].

The (e, e′K+) reaction, because of the absorption of the
spin 1 virtual photon, has high spin-flip probability even at
forward angles. In addition, the three-momentum transfer to
a quasifree " is high, approximately 300 MeV/c at 0◦ for
1500 MeV incident photons, so the resulting reaction is
expected to predominantly excite spin-flip transitions to
spin-stretched states [13]. Spin-flip states are not strongly
excited in hadronic production, and the (e, e′K+) reaction
acts on a proton rather than a neutron, creating proton-
hole, "-particle states, charge symmetric to those previously
studied with meson beams. Precision experiments, comparing
mirror hypernuclei, are needed in fact, to extract the charge
asymmetry in the "N potential.

An initial experiment [14], in Hall C at Thomas Jefferson
National Acceleration Facility (JLab) has been previously
reported, and this paper discusses the experiment in more
detail, presenting an improved "B spectrum as well as a
previously unpublished spectrum of the 7Li(e, e′K+)7

"He
reaction.

II. EXPERIMENTAL DETAILS

In electroproduction, the " and K+ particles are created
associatively via an interaction between a virtual photon and
a proton in the nucleus, p(γ ,K+)". The hypernucleus, "A,
is formed by coupling the " to the residual nuclear core,
(Z-1), as shown in Fig. 1(b). In electroproduction, the energy
and three-momentum of the virtual photon are defined by ω =
Ee −E

′

e and $q = $pe − $p
′

e, respectively. The square of the four-
momentum transfer of the electron is then given by −Q2 =
t = ω2 − q2 .

As will be shown below, the number of (virtual) photons
falls rapidly as the scattered electron angle increases (increas-
ing t), and thus the distribution of (virtual) photons also peaks
in the forward direction. In addition, the nuclear transition
matrix element causes the cross section for hypernuclear
production to fall rapidly with the angle between the reaction
kaon and the (virtual) photon. Thus experiments must be
done within a small angular range around the direction of
the incident electron. To accomplish this, the experimental
geometry requires two spectrometer arms, one to detect the

044607-2

same"as"(e,e'p)
Y"dynamics"

? Within this scheme, the nuclear transition amplitude factorizes into the
amplitude of the elementary process, a purely nuclear amplitude and a
hypernuclear amplitude

? The effects of Final State Interactions (FSI) between the outgoing K+

and the recoiling system can be included using an optical potential
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NUCLEAR TRANSITION AMPLITUDE

? Isolate the building blocks

M0→F = 〈K+, ΛA|J iA|0〉

=
∑
n

∑
kp,kΛ

{
〈ΛA|(A− 1)n〉|Y 〉

}
〈K+Y |ji|p〉

{
〈p|〈(A− 1)n|0〉

}
? Relation to the spectral function formalism of (e, e′p)

PN (kp, Ep) =
∑
n

|〈p|〈(A− 1)n|0〉|2δ(Ep − En + E0)

. probability of removing a proton of momentum kp from the
nuclear target, leaving the residual nucleus with energy Ep

PΛ(kΛ, EΛ) =
∑
n

|〈Λ|〈(A− 1)n|ΛA〉|2δ(EΛ − En + E0)

. probability of removing the Λ, carrying momentum kΛ from the
final state hypernucleus, leaving the residual nucleus with energy
EΛ
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KINEMATICS

? Conservation of energy requires

ω +MA = EK+ + EΛA , ω = Ee − Ee′

? From the nuclear and hypernuclear amplitudes

MA = Ep + En , EΛA = EΛ + En

? Missing energy, determined from measured kinematical quantities

Emiss = ω − EK+

ω = EK+ + EΛ − Ep =⇒ Emiss = EΛ−Ep

? Compare to (e, e′p)

E
(e,e′p)
miss = −Ep =⇒ EΛ = Emiss + E

(e,e′p)
miss

? (e, e′p) data provide the baseline for the model independent
determination of the Λ binding energy BΛ = −EΛ
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208Pb(e, e′p)207Tl DATA
spin-orbit partners are very similar. Therefore only one of the two can be included in the fitting

procedure. A transition energy has to be chosen, where the j = / - 1/2 strength vanishes and the j = /

+ 1/2 strength appears. For j = / - 1/2 to j = / +1/2 states the transition energy was chosen such,

208Pb(e,e'p) 207T1

2s1/2

10
20

^ t f v '

Figure 45 A three-dimensional plot of the proton spectral function of
20^Pb measured with the (e,e'p) reaction. The Ex-bin size chosen for the
l-decomposition is OS MeV (see text).
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Figure 4.6 Results of the l-decomposition of the proton spectral function of 208Pb
in an excitation energy region from 0 to 25 MeV showing the spectroscopic strength
in each bin as fraction (n() of the sum-rule limit that is exhausted by the valence
l-components (left) and by some deeper-lying l-components (right). The shown
curves are calculated according to formula (4.4J and used to estimate the strength
located outside the covered interval. The dashed lines separate excitation energy
regions where different orbits were employed in the fit.
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SPECTROSCOPIC FACTORS OF 208Pb

? Data: Quint, PhD Thesis (1988), Lapikas, NPA 553, 297 (1993).
Theory: OB et al PRC 41, R24 (1990)

? Deeply bound hole states largely unaffected by finite size and shell
effects
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MORE 208Pb(e, e′p)207Tl DATA

general dispersion-relation approach, which makes it possible to predict binding energies with an

accuracy of better than 1 MeV for the (sub)shells in 2O8Pb.

-25 -20 -15 -10
E B

H F [MeV] =>
-5

Figure 4A Difference between the measured average binding energy, <EB>, and
the corresponding HF prediction [NegV-72], E^F,for the valence and deeper-lying
orbits in 208Pb plotted as a function ofE^^. The drawn curve is a prediction for
this difference using a dispersion-relation approach [MahN-84].

Spreading Widths.

In figure 4.9a the experimentally determined spreading widths (T) for the deep-hole states in
2O7T1 given in table 4.9 are plotted as a function of the average binding energy relative to the Fermi

energy (EF). For low binding energies T is proportional [BerB-83] to the energy squared:

r = a(EB-EF)2 [4.1].

This dependence is expected for an infinite Fermi gas near the Fermi surface, where the width is

due to a damping mechanism in which the simple excitations mix with surface vibrations. The

empirical value for a of 0.05 has been deduced for low excitation energies from a number of

transfer-reaction data [BerB-83]. The full curve in figure 4.9a corresponds to this empirical value.

Brown and Rho [BroR-81] used for T the parametrization:

T = (24 MeV) (EB-Ep)2 / f (500 MeV2) + (EB-EF)2 ] [4.2]

to fit the single particle widths in medium light nuclei (A<58), which for low binding energy is

56

? Deviation of the observed binding
energies from mean field predictions

equivalent to formula [4.1]. As can be seen in figure 4.9a this prescription (dashed curve) gives a

fair description of the experimentally observed widths, which implies that this parametrization also

holds for heavy nuclei.
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Figure 4.9 a) The experimentally observed spreading widths F are plotted as a
Junction of/EB-Ep/ together with empirical prescriptions according to formula [4.1)
(full curve) and according to formula [4.2] (dashed curve).

b) The widths, which are transformed to <W> (see formula [4.3]), are
compared with results from nuclear-matter calculations with 0.5pNM (dotted curve)
and with pNM (dashed curve) and with (p,p) results (full curve).

One can also connect T, through the uncertainty principle of Heisenberg, to the imaginary

part of the optical potential, which is used for the description of the particle states [JeuL-76]:

T = 2 < W > [4.3]

In figure 4.9b the results of infinite nuclear-matter calculations for <W> by Jeukenne,

Lejeune and Mahaux [JeuL-76] are drawn for a nucleon density equal to the density of infinite

nuclear-matter (dashed curve) and to half this density (dotted curve). The extrapolation of these

calculations to EB = EF has been carried out according to the suggestions by Bertsch, Bortignon

and Broglia [BerB-83]. The data can be described quite well when one assumes, that the average

density seen by the protons in the lg7/2, lg9/2, 2p and If orbits lies between these two curves

57

? Widths of hole states
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MODELING THE (e, e′K+) CROSS SECTION

? The Λ binding energy in hypernuclei can be obtained in a largely model
independent fashion combining (e, e′K+) and (e, e′p) data

? Exploiting the experimental information to improve the models of
hyperon-nucleon dynamics will require the extension of the theoretical
framework developed to describe (e, e′p) data

? The main elements entering the calculation of the nuclear (e, e′K+)
cross section are

. The cross section of the elementary process e+ p→ e′ + Λ +K+

on a bound, moving nucleon (see talk of P. Bydžovský)
. A fully realistic—that is, beyond the mean-field

approximation—description of the hypernuclear amplitudes
determining the Λ spectral function
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COMPARISON BETWEEN (e, e′p) AND (e, e′K+)

? Within the independent particle model

PN (kp, Ep) ∼
∑
α

δ(Ep − εαp ) , PY (kY , EY ) ∼
∑
α

δ(EY − εαY )

. PN (kp, Ep) from (e, e′p)

484 J. MOUGEY et al. 

where the “distorted momentum density” is given by eq. (5.4). 
For the four nuclei we have extracted the energy distributions 9JE) by fitting 

the expansion (6.5), limited to the normally occupied orbits (except for 28Si where 
a 2s contribution was necessary). For Ga we used the distorted momentum distribu- 
tions computed from theoretical single particle wave functions. The quality of the 
data in the outer shells allowed a comparison with the model predictions of the shape 
of the momentum distribution; we find good agreement with the momentum 
distributions used, whereas less realistic distributions, like harmonic oscillator wave 
functions, can definitely be excluded 19) when fitting the lp, shell in 12C, for instance. 
The shape of the measured momentum distribution is generally well reproduced as 
shown in figs. 10, 12, 14 and 16. 

In the case of “C, the lp and 1s shells are almost completly separated experi- 
mentally, the only region where both shells contribute is between 22 and 30 MeV. 
It is worth noting that, above 30 MeV, the best fits to the momentum distribution, 
in energy bins of 5 MeV, all correspond to a pure 1 s momentum distribution, showing 
that all parts of the broad bump in the energy spectrum have the same momentum 
dependence. This justifies the assumption which was tacitly made in eq. (6.2), i.e. 
the use of a unique momentum distribution even if the state was spread over several 
ten MeV. 

Fig. 17 shows the strength distributions of the various shells in 28Si, 40Ca and 
58Ni. The most striking feature is the large spread of the 1 s hole strength, more than 
40 MeV, showing the difficulty of using the notion of shells for nucleons bound so 
strongly. The non-uanishing lp hole strength at high excitation energy (see for 
example the second maximum in 4oCa) is probably meaningless. It could result from 
the contribution of multiple scattering events of the outgoing proton, which we have 
neglected in the analysis. One also may note the splitting of lp hole strength in 28Si 
already deduced from (d, z) reactions 24): trying to fit the energy range 15-17.5 MeV 
with a mixture of 2s and Id subshells only, one definitely obtains a bad fit. That 
splitting has been explained 25) by a strong difference between the average Id,-lp, 
and Id,-lp, interactions. 

40 a EPkV) 20 40 KIE(MeV) 20 40 60 8OECMeV) 

Fig. 17. Hole strength distribution from (e, e’p) reaction on ‘*Si, 40Ca, 58Ni. 

. Accurate theoretical calculations
available for light nuclei and
infinite matter

. PΛ(kΛ, EΛ), I. Vidaña, NPA 958,
48 (2017)

I. Vidaña / Nuclear Physics A 958 (2017) 48–70 65

Fig. 7. (Color online.) Total spectral strength of a ! in the s, p, d, f and g partial waves for several hypernuclei predicted 
by the NSC97f model. As in Fig. 6 the discrete contributions are shown by weighted delta functions located at the 
corresponding energies of the different bound states. The contribution from the continuum is spread over all positive 
energies. The energy is measured with respect to the ! rest mass.

Fig. 8. (Color online.) Discrete contribution to the disoccupation of the s1/2 state in different hypernuclei from 5
!He to 

209
!Pb obtained with the JB (black lines) and NSC97f (red lines) models.
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SUMMARY & OUTLOOK

? The available (e, e′p) data provide the baseline for a model independent
determination of the Λ binding energy with the (e, e′K+) in hypernuclei

? The information obtained from these studies has the potential to greatly
help the development of accurate models of hyperon-nucleon
interactions

? Achieving this goal requires a theoretical framework for the description
of the (e, e′K+) cross section, including effects beyond the mean-field
approximation. The development of such a framework within nuclear
many-body theory does not involve severe conceptual problems, and
the results of early efforts in this direction are quite promising, see talks
of D. Lonardoni and I. Vidaña.

? The astrophysical implications of hypernuclear dynamics can be best
addresses using heavy and neutron rich targets, providing a good proxy
for neutron star matter. The nucleus of 208Pb, which has been
extensively studied by (e, e′p) experiments, appears to be the obvious
choice.
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Backup slides
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THE ELEMENTARY (e, e′k+) PROCESS

e+ p→ e′ + Λ +K+
Electroproduction of strangeness 

K+(PK ~x ^) 

y 

~ A) K+(p K~ 7 
S j 

b} 

~ ~  (q) -- p(p  87 \ 

Fig. 2. The genclic Fc? 9 man diagrams for thc clcmcntary pro™ !p. the r 
diagram (a) B stands for proton or strangeless nucleon resonances. The models discussed 
in this paper contain only the resonances with spin J = 1/2 and even or odd parity 
N(1/2+). In the u-channel (b) S is baryon with strangeness S = -1 .  In this paper S = 
A, E or Y(1/2• For the mesons M in the t-channel (S = 1) only pseudoscalar ( J  = 0-)  
K +, vector (J  = 1-) K* and pseudovector (J  = 1 +) K1 are considered. The resonances 

with higher spins are hot important in the energy range considered. 

in an isobaric model by applying a diagrammatic technique. The Born terms (with 
the nucleon, A hyperon and kaon poles) and contributions from the excitation of 
intermediate resonant states [strange:css S = 0 baryon resonances for s-channel 
diagrams of Fig. 2a, S = - 1  baryon resonances in u-channel (Fig. 2b) and S = 
1 meson resonances in t-channel (Fig. 2c)] are represented by the lowest order 
Feynman diagrams. Unlike the electroproduction of pions, there.is no dominant  
resonant contribution. Hence, a number of dynamical models have been developed 
[11,13,17-21], differing by the choice of the intermediate states. Since high spin 
resonances seem to have little effect on improving the fit to the data  [l l] ,  we 
present in Appendix A the hadron current matr ix  elements for generic diagrams 
with the baryonic resonances with the spin 1/2 and mesonic ones with the spin 0 
and 1. The mat r ix  elements follow from the standard Feynman rules. To allow for 
an independent choice of the electromagnetic (elm) form factors, we adopt  a non- 
minimal form of the elm vertex functions, inspired by the vector meson dominance 
[15,22]. The hadron current matrix element for each diagram is then decomposed 
into a set of six gauge invariant terms: 

y = y ~  A i ( s , t , u )  ~(pA) M  9 u(pp) , (2.1la)  
i 

1 
M  9  = ~ "/5 [ (7"q)7  u - 7u(7  9 q) 1, (2.1lb)  

Czech. J. Phy$. 42 (1992) ] 173 

. B, S and M denote a nonstrange baryon, a strange baryon and a strange
meson, respectively
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? Elementary cross section

3 Electroproduction of hypernuclei

On hight quality electron beams hypernuclear levels can be identified with a
resolution of few hundreds keV. Photo- and electroproduction reactions (∞,K+)
and (e, e0K+) are characterized by the large momentum transfer (q ∏ 350
MeV/c) and the strong spin-flip terms. This means that photons (real or vir-
tual) may excite both natural and unnatural parity, low- and high-spin hyper-
nuclear states including states with deeply-bound § hyperon.

Electromagnetic production of K+§ pairs goes on the proton making possible
to study the hypernuclei non accessible on meson beams - He7

∏, Li9§, Be10
§ , B12

§ , N 16
§ ,.....

Some of them are mirror ones to hypernuclei known before

Be10
§ ° B10

§ , B12
§ ° C12

§ , N 16
§ ° O16

§

3.1 Description of electro-production process

The kinematics of the electroproduction reaction

e(pe) + p/A(pp/pA) ! e0(p
0
e) + K+(pK) + §/HN(p§/pHN)

on proton(p) or nuclear(A) target producing § hyperon or hypernucleus(HN)
respectively is depicted in Fig.

Φ

θe
θ

p

p'
γ

q

p

p
Λ

Scattering (Leptonic) Plane

Reaction (Hadronic) Plane

z

x
ŷ

e

e

K

K

K

^

^

Figure 5: Kinematics of an electroproduction process.

6

dσN
dEe′dΩe′dΩK

∝
[
η+W xx + η−W yy + εLW

zz +
√
εLη+ (W xz +W zx)

]
Wµν ∝

∑
spins

jµ†jν

example: s-channel

jµ = ū(pΛ)Γ(pK)SF (pp + q)Γµ(q)u(pp)
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? Hadron tensor [J. Adam et al, Czech. J. Phys 42, 1167 (1992),
D. Skoupil and P. Bydžovský, PRC 93, 025204 (2016), 97, 025202
(2018) ]

jµ =
∑
i

Ai(s, t, u)ū(pΛ)Mµ
i u(pp)

s = (q + pp)
2 , s = (q − pK)2 , s = (q − pΛ)2

Mµ
1 =

1

2
γ5

[
/q, γ

µ
]

Mµ
2 = γ5

[
q2pµp − (q · pp)qµ

]
, Mµ

3 = γ5

[
q2pµΛ − (q · pΛ)qµ

]
Mµ

4 = γ5

[
γµ(q · pp)− /qpµp

]
, Mµ

5 = γ5

[
γµ(q · pΛ)− /qpµΛ

]
Mµ

6 =
1

2
γ5

[
/qq
µ − γµq2

]
? The model parameters involved in the definition of the current,

e.g. the strong coupling constants, are obtained from a fit to the
existing data
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FROM NUCLEI TO NUCLEAR MATTER AND NEUTRON STARS

Home Plot Download Charge Radii About

Nuclei Charge Density Archive

Welcome to the Nuclear Charge Density archive

We have collected here data from Atomic and Nuclear Data Tables, Volumes 14, 36 and 60, which provide a
varierty of fits for nuclear charge density extracted from elastic electron-nucleus scattering. This webpage
was created in order to have a digital collection of raw data online that could then be used to calculate the
charge density using Sum of Gaussian, Fourier Bessel, or Charge Density distribution formulas.

Currently this webpage provides data files along with C++ code to calculate charge densities ρch, and
adjusted charge densities (A/Z)*ρch

Acknowledgements (Jan. 2012 - Jun. 2014):

Alan Brody: Parameter Collection
Bryan Lewis: C-code Development
Stephen Washington: Web Page Creation

For questions, comments, or bug reports, please contact Donal Day by email: dbd [ at ] virginia [ dot ] edu

18 / 13


