
Physics Data Production on

HPC: Experience to be

efficiently running at scale

Michael D. Poat, Jérôme Lauret, Jefferson Porter, & Jan Balewski

NERSC Users Group SIG Meeting

June 17th, 2020

1

Outline

 Introduction

 Containers & CVMFS

 STAR Data Production Workflow

 Database Access

 Efficiency & Throughput Considerations

 Conclusion

2

Introduction
 The Relativistic Heavy Ion Collider (RHIC) is located at

Brookhaven National Lab (BNL) in Upton, NY

 The STAR detector at RHIC produces 10s of PB every
year and ran its data production on NERSC/PDSF for ~20
years

 PDSF’s is EOL -> migrated to NERSC/Cori

 Ongoing Efforts for STAR Data Production on Cori

 Container Model

 Scalability of CVMFS serving the STAR SW on Cori

 Workflow on Cori

 MySQL Database access

 Efficiency

3

NERSC – ‘Cori’ Cray XC-40 Supercomputer
 20 TB $SCRATCH/user (Luster FS)

 2388 Xeon "Haswell" nodes

 32 Cores (64 vCores, 2-way HT)

 120 GB RAM (~ 1.8 GB / vCore, plenty for STAR)

 9688 Xeon Phi "Knights Landing" nodes (KNL)

 68 Cores (272 vCores, 4-way HT)

 96 GB RAM (0.35 GB / vCore or 1.4 GB / core)

4

 Evaluated KNL & Haswell maximum
utilization with STAR tasks

 STAR SW requires ~1 GB RAM

 Haswell: Supports 60 STAR tasks
per/node

 KNL: Supports 100 STAR task
per/node

Haswell KNL
Balewski, J., Porter, J., Rath, G., Lee, R., Quan, T. (2018) PDSF – Status & Migration to Cori HEPiX Fall 2018, Barcelona

60 Tasks

100 Tasks
STAR Task Density

STAR Software in Containers

 Docker/Shifter containers are required to enable the STAR Software to run on Cori

 STAR Docker containers are built based on Scientific Linux 7 (SL7)

 SL7 + RPM (650 MB)

 SL7 + RPM + STAR SW (3 GB)

 SL7 + RPM + STAR SW + 1 STAR Library (4 GB)

 Cons: If we have to update the Base image, all

images will need to be updated -> maintenance nightmare

 Pros: All Software and libraries packed in 1 container

 Decision (standard practice): Use CVMFS for all Experiment

stack related software -> standard way for software

provisioning
Container Maintenance Tree

5

STAR Software in Containers Cont.
 Our initial running setup on Cori required a minimum of two nodes

 1+ Node for STAR tasks

 1 Node for STAR calibration database

 Not an efficient use of worker nodes on Cori

 The current running setup combines STAR Tasks

& MySQL Database on 1 node

 1 Node for STAR Tasks & STAR calibration database

 All node(s) used in a job on Cori will be running STAR

tasks

6

Initial Running Setup on Cori

(Minimum 2 nodes)

Current Running Setup on Cori

CVMFS & Squid
 CERN VM File System (CVMFS) provides a read-only scalable, reliable and low-maintenance software distribution service

 CVMFS requires tiered “Stratum” servers for reading/writing data. STAR requested BNL’s Facility to deploy Stratum 0/1 CVMFS servers,

 Client side needs CVMFS rpm + configuration requires multiple public keys (BNL & star.sdcc key) and config. Files (CVMFS mounts using

the Fuse module, can be mounted with AutoFS)

 A Squid Proxy was deployed to support our 240 slot Online Compute Farm

 Multiple Squid proxies recommended, we deployed only one for our small farm (for now) -> Used to reduce load on Stratum servers

 Proxy node configured to bridge network zones i.e. “online” and “offline” are separated into zones. This ensures fast IO to CVMFS clients.

 Caching

 Squid Proxy has 25 GB cache
(cache_dir ufs /var/spool/squid 25000 16 256)

25 GB -> Enough space to avoid churn even

with many more libraries and packages added

 Clients have 25 GB of cache stored on local disk

 Cache data is sustained on client disk after 1 read event

 Base Software Stack and set of libraries installed in
/cvmfs/star.sdcc.bnl.gov

7

CVMFS on Cori

Throughput Maximization for CVMFS

 Looked at average of events produced min/“task”

 Scaled from 1 – 240 nodes

 Drops by ~10-12% at first but we still gain in “events min/node”

 Curve remains flat afterward up to our max @15,000 tasks on 240 nodes

 In order to achieve this we needed to modify our workflow with

time delays… 8

CVMFS on Cori

 CVMFS requires FUSE kernel module to mount natively

 Fuse restriction on Cori (No Kernel access on worker nodes)

 NERSC provides Cori with Data Virtualization Service (DVS)
servers

 Used for I/O Forwarding and data caching

 Cori has 32 DVS Servers, 4 dedicated to forwarding CVMFS I/O

 DVS servers forward I/O well, but do not support metadata
lookups (requires lookup to real CVMFS backend -> latency)

STAR Workflow on Cori

9

 First we launch steering script to the batch system
Node 1

Node 2

Node n

STAR Workflow on Cori

9

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

Node 1

Node 2

Node n

STAR Workflow on Cori

9

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB

has started (biggest time killer!)

Node 1

Node 2

Node n

STAR Workflow on Cori

9

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB

has started (biggest time killer!)

 Node(s) will launch ‘n’ Parallel ROOT4STAR tasks

Node 1

Node 2

Node n

STAR Workflow on Cori

9

 First we launch steering script to the batch system

 Starts the STAR+mysqld container

 Runs ‘Load DB’ & STAR SW scripts in parallel

 Both scripts have random sleep delays (one for copying

the DB and 1 for loading SW via CVMFS)

 Once STAR SW is loaded the script will wait until the DB

has started (biggest time killer!)

 Node(s) will launch ‘n’ Parallel ROOT4STAR tasks

Node 1

Job start efficiency loss

Node 2

Node n

Database Server on Cori Batch Nodes
MySQL Database Access is required for the STAR Software to run

 STAR does have public facing DB servers that do scale,

but Cori worker nodes are on an internal network.

 Hours old snapshots of the DB can be copied to run

locally on Cori at anytime

 Once copied, a Cori authentication table is merged

with the new DB and we are ready to run

10

STAR DB copied from BNL to NERSC/CORI

Database Server on Cori Batch Nodes
MySQL Database Access is required for the STAR Software to run

 STAR does have public facing DB servers that do scale,

but Cori worker nodes are on an internal network.

 Hours old snapshots of the DB can be copied to run

locally on Cori at anytime

 Once copied, a Cori authentication table is merged

with the new DB and we are ready to run

10

STAR DB copied from BNL to NERSC/CORI

How we run the DB

 In the past, we would dedicate 1 head node on Cori to run the STAR Database
serving X worker nodes

 We now have our ‘mysqld’ DB server installed in the same docker container
running the STAR Software on Cori -> each node serving itself

Can worker node running DB + R4S tasks serve DB to itself & other worker nodes?

 With configuration tuning a worker node can run DB + R4S tasks to serve itself
& 10s of other worker nodes

 Default configuration DB could only handle 150 connections

 ‘Head node’ model sacrifices an entire node

How does this affect our efficiency…?

Efficiency on Cori

11

Efficiency on Cori

11

• Job Start Efficiency: Real time to
copy/start DB, load env., sleep
delays (E1)

• Event Efficiency: CPU/Real time
ratio for STAR event data
reconstruction (E2)

• Total Efficiency: SLURM job Start
->Last Task Finished
(NodesUsed/NodesUnused) * E1 *
E2

Efficiency on Cori

11

• Job Start Efficiency: Real time to
copy/start DB, load env., sleep
delays (E1)

• Event Efficiency: CPU/Real time
ratio for STAR event data
reconstruction (E2)

• Total Efficiency: SLURM job Start
->Last Task Finished
(NodesUsed/NodesUnused) * E1 *
E2

Goal: Maximize (event per sec. / per $)

 Dedicating 1 head node as DB only to serve
10 worker nodes (1-to-11) VS. (1-to 1) model
(each worker node self-serves DB)

 1-to-1 model: Total Eff. 99.30%

 1-to-11 model: Total Eff. 89.44%

 Better to self-serve DB

 Job Start Efficiency: we lose ~.05%

 Event Efficiency: ~98-99%
big job = highest value

 Total Efficiency on 1-to-1 KNL/Haswell, and
BNL BCF: ~98-99%

 Total vCore Utilization:

 Haswell: 87% @ 60 task + 1 DB

 KNL: 36.9% @ 100 task + 1 DB

 Cannot maximize CPU util. due to memory limit
-> Best to focus on packing best # of tasks
per/node & Total Efficiency

Job (T) DB dump, Load

Env., Rand (1-60s)

delays

Job Start Efficiency

(Total Job Time -

(T))/Total Job Time

(E1)

Event Efficiency

All Events

(E2)

Total Efficiency
(NodesUsed/Nodes

Unused) * E1 * E2

KNL 1 Node

(Long Test – 60

task)

819 sec. 99.50% 99.79% 99.30%

KNL 11 Nodes

1 Node ded. DB

server (60 task)

864 sec. 99.48% 99.90% 89.44%

Haswell 1 Node

(Long Test – 60

task)

378 sec. 99.76% 99.04% 98.80%

BNL RCF Job –

100 tasks
1 sec. 99.99% 99.81% 98.82%

Idle CPU Problem

12

 When a job is submitted with multiple tasks, each task will finish at

different times.

 If no new task is assigned, the CPU will sit idle

 You pay for the total time of the longest running task

 If we push the tasks to run past the 48h time limit, and if it does

not finish gracefully = Data not easily usable

 To Fix this “Problem” we need

 A “Throughput Estimator” to estimate how long a job will take

 “Signal Handling” to ensure a task can be “soft killed” properly with

no data loss

 An “Event Service” to launch new tasks

 “Event Service” would also serve to launch new tasks with low events to

maximize 48h time slot

Throughput Estimator

13

 Due to the ‘Job Start’ efficiency loss, it is best to run for the maximum amount of time (48h)

 By obtaining the average time events are processed per task, we can estimate how long a job will take

 Multiple tests run on a single KNL node, a single Haswell node, & BNL RCF (2.8GHz Intel)

 The distribution and scaling is very predictable between the systems on any dataset

 With the estimator, we only need to run a small batch of jobs on our BNL RCF farm to get estimate of total time on Cori
KNL/Haswell

 Provides starting point for “Event Service” to launch new tasks when one finishes

Conclusion
 Database:

 DB can be copied to NERSC on demand and remerged with authentication tables

 On Cori: Worker node running ‘mysqld’ DB instance + R4S tasks to self-serve & serve DB connections to some worker nodes -> most
efficient model

 Workflow:

 Launch DB & environment scripts in parallel

 DVS for CVMFS is a workable solution but required us to implement time delays (latency)

 Efficiency:

 Events produced min/node:

 Haswell: 40.55 total events per min (60 tasks total)

 KNL: 13.7 total events per min (100 task per node)

 Head node model introduces biggest efficiency % loss

 Haswell provides best CPU power / $ for us

Our next steps

 Ensure graceful termination of the tasks (use of “signal handling”)

 Potential use of Burst Buffer to pre-stage DB content

 “Event Service” is coming soon

14

15

Thanks!

Summary Slide
 Docker/CVMFS

 Containers are kept to minimum -> SL7 + RPM + mysqld

 Software provisioned from CVMFS via DVS servers on Cori

 DB Access

 STAR DB snapshot dumped at Cori, remerged with auth tables,
then run in container to serve STAR tasks

 Each node on Cori can run its own copy of
DB + ROOT4STAR tasks & serve other worker nodes

 Burst Buffer may be a solution to pre-stage DB copies before start of job

 Workflow: Maximize our “Job Start Efficiency” with parallel setup scripts

 Delays for DB dump and loading software via CVMFS -> needed
to not overload subsystems

 Efficiency: “Job Start Efficiency” and “Idle CPU Problem”
have minimal impacts on “Total CPU/Real time Efficiency”
if we run for maximize node allocation (48h)

 Places where we lose CPU time are understood – solutions underway

 Total CPU/Real time Efficiency on
Cori with 1-to-1 DB model: ~98-99%

14

