
1

Throughput
Computing and
Workflows at

NERSC

NERSC Users Group Special Interest
Group on Experimental Facilities
June 11, 2020

Bill Arndt
Data Science Engagement Group

warndt@lbl.gov

2

Agenda

● Motivation and Scope
● Resources Available at NERSC
● Throughput Computing Challenges
● How to Throughput Work at NERSC

3

Why workflows are hard on HPC

• Not part of HPC culture
• No consensus definition of what “workflow” means
• Choice overload of tools

o Diversity among use cases and infrastructure
o More than 300 choices, none of them feel right so I’ll make my

own...
o ...now more than 301 choices
o Choosing the wrong tools can be disasterous

• Users often neglect to anticipate or plan for it

4

What are workflows?

• A workflow is a problem best solved by inserting
automation between user action and interfaces* to
computation and data resources**.
o *Interfaces like: Slurm commands, shell on a login node, HSI,

Globus, IRIS, NEWT
o **Resources like: Cori compute nodes, storage, network

bandwidth and data transfer, identity management
• Workflow Management Tools (WMT) are the software

systems that perform that automation.

5

Some Generalized Examples

• Run one application thousands of times
• Chain together several different applications
• Application has a 2% chance of crashing and needing

rerun
• Rerun this application every month

Resources Available at NERSC for
Workflows

7

What NERSC is doing to support workflows

• Specialized infrastructure, software, and support
• Workflows Working Group

o Formed September 2019 - Laurie Stephie (DAS), Bjoern Enders
(DSEG), Bill Arndt (DSEG)

o Thourough evaluation of many WMT ongoing
o Documentation and guidance refresh
o Outreach to users, facilities, tool developers, and infrastructure

providers

8

Cori Workflow Nodes

• Cori has two service nodes specifically reserved for
WMTs
o Same environment as login nodes
o Access is limited to approved users
o Heavy compute not allowed
o The preferred place for crontabs
o Uptime same as Cori login nodes, prepare accordingly

• Gain access by submitting a request to NERSC support
o Be prepared to describe your WMT and its resource footprint
o Provide a list of users who need access to set up and maintain

the WMT

9

WMT Documentation and Guidance

• https://docs.nersc.gov/jobs/workflow-tools/
o A work in progress; expanding and refining as our tool evaluation

continues
o Detailed information, examples, pitfalls, and suggestions

regarding specific tools and use cases
• We want to get tickets about workflow management tools

o Builds our experience and knowledge of what users need
o Opprotunity to share that experience

https://docs.nersc.gov/jobs/workflow-tools/

Throughput Computing Challenges

11

Throughput Constraints: Slurm Performance

• The Slurm controller process and its database are a
common bottleneck.

• Most Slurm commands incur some load or a database
lock:
o sbatch, salloc, sinfo, scontrol, squeue, sqs, srun

• Overloading Slurm degrades Cori for all users.
• Avoid issuing more than one Slurm command per second.

o Beware of WMTs that do this under the hood

12

Throughput Constraints: Queue Policy

• MaxJobAccrue: 2
o Each user gets 2 jobs gaining priority.
o Favors fewer jobs each requesting more resources and

discourages many smaller jobs.
• Big rewards for packing many small tasks into fewer jobs

requesting more nodes
• Don’t use Slurm task arrays

13

Throughput Constraints: Filesystem Design

• HPC filesystems are designed to deliver maximum
bandwidth to full-system sized jobs.

• High throughput workloads tend to use less total I/O
bandwidth but many more operations.

• Some WMTs use filesystem locks or mmap commands
that aren’t available on all NERSC filesystems.

• Common source of scaling bottlenecks

How To Throughput Work at NERSC

15

srun Can be Used for Throughput
elvis@cori04:~/work> cat srun_tasks.sh
#/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -C haswell
srun -n 64 -c 2 payload.sh

elvis@cori04:~/work> cat payload.sh
#!/bin/bash
echo $SLURM_PROCID

• Runs 64 tasks distributed over
2 nodes, 2 threads and 1 core
each

• Use $SLURM_PROCID inside
each task to uniquely
distinguish its execution

• --multi-prog flag plus its
config file can be used to
make different task shapes in
a single srun

• background srun is unreliable

16

srun Tasks with Errors or Finishing Early

• If any task in an srun exits non-zero, every task in the
srun is killed
o add --kill-on-bad-exit=0 to change that behavior

• If a node in the job fails, the entire allocation will be killed
o add --no-kill to sbatch and srun to change this behvaior

• srun --wait flag controls if and when running tasks are
killed if any of them finish before others
o Our configuration by default applies --wait=0 (wait for all tasks)

17

GNU Parallel is Better than Shared QOS
elvis@cori07:~> seq 1 5 | parallel -j 2 'echo \

> "Hello world {}!"; sleep 10; date'

Hello world 1!

Thu Jun 11 00:21:00 PDT 2020

Hello world 2!

Thu Jun 11 00:21:00 PDT 2020

Hello world 3!

Thu Jun 11 00:21:10 PDT 2020

Hello world 4!

Thu Jun 11 00:21:10 PDT 2020

Hello world 5!

Thu Jun 11 00:21:20 PDT 2020

elvis@cori07:~>

• module load parallel
• Lots of advantages over srun

o Run combinations of tasks in
parallel and sequence

o Easier input substitution
• If you need it, much more

power is available
o No risk of Slurm overload
o Packed jobs have massively

reduced total queue wait
• ...but it only works on one

node...

18

Why not both?
• Use srun to run parallel

on each node
• Arguments pass through the

task input list
o awk can round-robin

distribute tasks to each node
• This pattern scales to use all

of Cori
o Look out for new bottlenecks

of course

elvis@cori04:~/work> cat srun_tasks_n.sh
#/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -C haswell
#SBATCH --ntasks-per-node 1
srun -K 0 -k -n 2 payload.sh $1

elvis@cori04:~/work> cat payload.sh
#!/bin/bash
cat $1 | \
awk -v NNODE="$SLURM_NNODES" \
-v NODEID="$SLURM_NODEID" \
'NR % NNODE == NODEID' | \
parallel task.sh {}

elvis@cori04:~/work> sbatch srun_tasks_n.sh \
list_of_tasks_input.txt
Submitted batch job 2053142

19

“Two percent of my tasks will fail.”
• --joblog and

--resume-failed can be
used to track and rerun tasks
with non-zero exit codes

• Don’t use --retries, it
doesn’t do what it should

• Job log files must not be
shared by multiple
concurrently running instances
of parallel

elvis@cori04:~/work> cat payload.sh
#!/bin/bash
cat $1 | \
awk -v NNODE="$SLURM_NNODES" \
-v NODEID="$SLURM_NODEID" \
'NR % NNODE == NODEID' | parallel \
--joblog logfile_$SLURM_NODEID.txt \
task.sh {}

cat $1 | \
awk -v NNODE="$SLURM_NNODES" \
-v NODEID="$SLURM_NODEID" \
'NR % NNODE == NODEID' | parallel \
--joblog logfile_${SLURM_NODEID}.txt \
--resume-failed task.sh {}

20

Staggering Task starts
• Use to protect services or

filesystems from being
overwhelmed
o use sleep to slow the rate

that parallel commands
begin

o --delay flag limits the rate
that each parallel issues
new tasks

elvis@cori04:~/work> cat payload.sh
#!/bin/bash
sleep $((5*${SLURM_NODEID}))
cat $1 | \
awk -v NNODE="$SLURM_NNODES" \
-v NODEID="$SLURM_NODEID" \
'NR % NNODE == NODEID' | parallel \
--delay 30 task.sh {}

21

Burst Buffer and Throughput Computing

• The Burst Buffer has excellent I/O operations capacity
o Up to hundreds of metadata servers on Burst Buffer vs. two for

Cori scratch
o Nessecary to scale an I/O intensive HTC workload to hundreds of

compute nodes or beyond

22

Data Centric Workflow Management Tools

• “I have many different applications and data types
chained together in a network of dependencies.”

• Plenty of options. Snakemake and Parsl are two good
choices, among many
o Documentation coming soon

• Pitfalls:
o Many expect cloud responsiveness and can’t handle queue

waiting or policies
o Often lack job packing
o Naive Slurm integration can use too many requests

23

Thank You

