SIDIS Dihadron Beam Spin Asymmetries

Christopher Dilks CLAS Collaboration Meeting 29 April 2020

- Aim to publish a PRL paper with CLAS12 dihadron beam spin asymmetries
 Measurements:
 - $sin(\phi_R)$ modulation of A_{LU} , which improves constraints on the twist-3 PDF e(x)
 - $sin(\phi_h \phi_R)$ modulation of A_{LU} , sensitive to the not-yet-constrained helicity DiFF G_1^{\perp}
 - Additional modulations, such as $sin(\phi_h)$, which are included in a simultaneous fit to mitigate linear dependence between the amplitudes

Twist-3 Collinear PDF e(x)

- \blacklozenge e(x) decomposition: $e^q(x) = e^q_{sing}(x) + e^q_{tw3}(x) + e^q_{mass}(x)$
 - $e_{sing}(x)$ proportional to $\delta(x)$, which could broaden at low Q² (LaMET model, XiangdongJi:arXiv:2003.04478)
 - $e_{tw3}(x)$ pure twist-3 part \rightarrow interference between scattering from |q> vs. |qg>
 - $e_{mass}(x)$ proportional to current quark mass and moments of $f_1(x)$ [twist-2]
- \blacklozenge Physical interpretation from moments of e(x):
 - Force exerted by gluon field on $q\,{\scriptscriptstyle\uparrow}$ after scattering
 - Pion-nucleon σ term, representing the contribution to the nucleon mass from the finite quark masses

Helicity Dependent DiFF: G_1^{\perp}

- Accessible in the $sin(\Phi_h \Phi_R)$ modulation of dihadron longitudinal beam spin asymmetries, weighted by P_h^{\perp} / M_h
- Sensitive to spin-orbit correlations in hadronization
- Not yet constrained by data; quark-jet hadronization model predicts sizable G_1^{\perp}

$$A_{LU}(x, y, z, M_h) = \frac{\langle P_h^{\perp} \sin(\phi_h - \phi_R) / M_h \rangle_{LU}}{\langle 1 \rangle_{UU}}$$

= $\lambda_l \frac{C'(y)}{A'(y)} \frac{\sum_a e_a^2 f_1^a(x) z G_1^{\perp a}(z, M_h^2)}{\sum_a e_a^2 f_1^a(x) D_1^a(z, M_h^2)}$

Matevosyan, et al.

- Phys.Rev. D96 (2017) no.7, 074010
- PoS DIS2018 (2018) 150

• Recent spectator model calculation predicts sign change at the ρ mass Luo, et al., Phys.Rev. D101 (2020) no.5, 054020

Spectator Model Prediction

Estimated Timeline

		_			-
April	Мау	June	July	August	September
Pass1	Cooking	Analysis / OA full dataset			
Crosscheck		+ final cro	osscheck	Colleboration Deview	
		Analysis Note	Collaboration Review		
Cha	aracterize Syste	matic Uncertain			

- Crosscheck completed in early April
- Pass1 inbending data are cooked
- Cooking of outbending data is starting, and could be included in our analysis
- Currently working on estimating systematic uncertainties

Crosscheck with Timothy Hayward

All kinematic variables match up to at least 6 significant figures, and we have nearly the same yields

Asymmetries amplitudes match as well

Full Statistics Asymmetries

(from Timothy)

- Fiducial volume cuts disabled
- Run QA not yet performed
- These are raw asymmetries
 - Polarization & kinematic factors not divided out
- This represents an upper bound of the statistics for this measurement

Loose Fiducial Volume Cuts

(from Timothy)

- Fiducial volume cuts: page through these next few slides to compare the effects of the cuts
- These are the DNP fiducial volume cuts, and need to be updated with Stefan's latest version

Medium Fiducial Volume Cuts

(from Timothy)

Ŧ

Ŧ

Ŧ Ŧ

 $M_{\pi\pi}$ (GeV)

Ŧ

Tight Fiducial Volume Cuts

- Fiducial volume cuts impart small changes in the asymmetry, typically within the statistical uncertainty
- Impact on statistics is minor, so we suggest to just use the "tight" cuts to maximize data quality

Systematic Uncertainties

.

Uncertainty	Estimate	Status / Comments	
Beam Polarization	1.5–3% on scale	Straightforward: obtain from polarization measurements	
Radiative Corrections	3% ?	In Progress	
Acceptance		In Progress	
PID / Matching Fraction		In Progress	
Baryonic Resonances	~14% on scale		
Additional modulations of the unpolarized x-section	<40% on scale	In progress; 40% is likely too conservative	
Horizontal Uncertainties / bin migration		In Progress	

M_x-dependence of Asymmetries

(from Timothy)

- Study missing mass dependence of asymmetries
- Explore exclusive limit, which may help constrain impact from high energy BH radiation on radiative corrections
- Strong dependence of A_{LU} on M_x seen for $M_x < 1.5$ GeV
- Suggests improved cut for the paper of M_x>1.5 GeV

- Aspects of Common Interest for Asymmetry Analyses:
 - Fiducial volume cuts
 - PID cuts
 - Momentum corrections
- Current focus is on estimating systematic uncertainties
- Analysis note is in progress
- We hope to have the analysis and paper ready by the end of the summer

BACKUP

DNP2019 Preliminary Results

- There appears to be a sign change near M
- \mathbf{H}_{P} has opposite M_{h} dependence to $\mathsf{A}_{\mathsf{h}\mathsf{P}}$
- $\mathbf{A}_{\mathbf{h}}$ is a constant 3-4%
- ±3.8% polarization scale uncertainty

Simultaneous fit performed, because these modulations are **not orthogonal** within the acceptance limitations

https://www.jlab.org/indico/event/343/session/7/contribution/76

Structure Functions \rightarrow PDFs and DiFFs

Structure Function	Twist	m = 0 Modulation	m = 1 Modulation	$\mathrm{PDF} \otimes \mathrm{DiFF}$
$F_{LU,T}^{P_{\ell,m}\sin(m\phi_h - m\phi_R)}$	2	0	$\sin\left(\phi_{\mathbf{h}} - \phi_{\mathbf{R}}\right)$	$f_1 \otimes {f G_1^{\perp \ell,{f m} angle}}$
$F_{LU}^{P_{\ell,m}\sin[(1-m)\phi_h+m\phi_R]}$	3	$\sin \phi_h$	$\sin\phi_{f R}$	$\mathbf{e}(\mathbf{x})\otimes H_1^{\perp \ell,m angle}+g^{\perp}\otimes D_1^{ \ell,m angle}$

- Differential cross sections are expanded in terms of modulations of ϕ_h , ϕ_R , and θ , with structure function coefficients
 - θ -dependent factors are for partial wave expansion of DiFFs \rightarrow beyond the scope of this paper
 - ϕ_{h} , ϕ_{R} dependent functions are Fourier series functions \rightarrow *focus on m=1 (and 0)*
- Structure functions contain convolutions of PDFs and Dihadron Fragmentation Functions (DiFFs)
 - m=1 azimuthal modulations are the *primary* dihadron A_{LU} modulations of interest, for accessing
 - $\mathbf{G}_{\mathbf{1}}^{\perp}$: the helicity-dependent DiFF
 - e(x): the twist-3 collinear PDF
 - m=0 modulations can be identified with the single-hadron structure function modulations, and included as a *correction* in the multi-amplitude fit