Timelike Compton Scattering with CLAS12

Positron identification R ratio and Forward Backward asymmetry

CLAS Collaboration meeting - 29th April 2020

Pierre Chatagnon

Laboratoire Irène Joliot-Curie (IJCLab)

chatagnon@ipno.in2p3.fr

Outline

- Physics motivations
- TCS event selection
- Positron identification
- Ratio R and Forward/Backward asymmetry extraction
- CD proton efficiency correction (in progress)

From DeeplyVirtualComptonScattering to TimelikeComptonScatteringDVCS $(\gamma^* p \rightarrow \gamma p)$ TCS $(\gamma p \rightarrow \gamma^* p)$

Compton Form Factors (CFF) $\mathcal{H} = \sum_{q} e_{q}^{2} \left\{ \mathcal{P} \int_{-1}^{1} dx H^{q}(x,\xi,t) \left[\frac{1}{\xi-x} - \frac{1}{\xi+x} \right] + i\pi \left[H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \right] \right\}$

Imaginary part

- Measured in DVCS asymmetries
- TCS γ polarization asymmetry

Real part

- Accessible in DVCS cross section
- Charge asymmetry (E. Voutier talk)
- TCS cross section angular modulation (R and F/B asymmetry)
 Piere Chatagnon (IJCLab)
 TCS

Physics motivations

1 Nucleon D-term

• The CFFs dispersion relation at leading-order and leading twist :

$$Re\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) Im\mathcal{H}(\xi,t) + D(t)$$

• D-term expansion

$$D(t) = \frac{1}{2} \int_{-1}^{1} dz \frac{D(z,t)}{1-z}$$

$$D(z,t) = (1-z^2)[d_1(t)C_1^{3/2}(z) + ...]$$

- $d_1(t)$ is directly related to the pressure distribution in the nucleon.
- 2 Test of universality of GPDs
- \bullet Photon polarization asymmetry sensitive to ${\it Im}{\cal H}$

Boër, Guidal, Vanderhaeghen (2015)

$\gamma p \rightarrow e^+ e^- p$ kinematics

$$Q'^{2} = (k + k')^{2} \qquad t = (p' - p)^{2}$$

$$L = \frac{(Q'^{2} - t)^{2} - b^{2}}{4} \qquad L_{0} = \frac{Q'^{4} \sin^{2} \theta}{4} \qquad b = 2(k - k')(p - p')$$

$$\tau = \frac{Q'^{2}}{2p \cdot q} \qquad s = (p + q)^{2} \qquad t_{0} = -\frac{4\xi^{2}M^{2}}{(1 - \xi^{2})}$$

TCS and Bethe-Heitler

Pierre Chatagnon (IJCLab)

Event selection

 $ep \rightarrow e'\gamma p \rightarrow (e')e^+e^-p'$

Final state

- Use the CLAS12 reconstruction software PID
- Additional positron pid (next 3 slides)
- Events with exactly one e⁺,one e⁻ and one proton are selected

Scattered electron

- Cut on scattered electron missing mass
- Cut on missing transverse momentum
- These cuts constrain the virtuality of the photon $Q^2 \propto 1 cos(\Theta_{scattered})$

Exclusivity cuts

$$\frac{Pt}{P} < 0.05$$

$$Mass^2 < 0.4 \ GeV^2$$

$$P_{lepton} > 1 \, GeV$$

Lepton identification

Positrons identification

Pierre Chatagnon (IJCLab)

TCS with CLAS12 at JLab

Estimation of the absolute contamination of π^+ in the TCS sample

 \rightarrow This method reduces B/S from 0.5 to 0.05

TCS with CLAS12 at JLab

Lepton pair mass spectrum

Complete RG-A inbending data set used in the following

Data/BH simulation comparison in the high mass region 4 GeV $< E_{\gamma} <$ 10 GeV 0.15~GeV < -t < 0.8~GeV

No large vector meson background

Pierre Chatagnon (IJCLab)

TCS with CLAS12 at JLab

Acceptance and fiducial cuts

$$Acc_{\Omega = (E_{\gamma}, Q^{\prime 2}, -t, \phi, \theta)} = \frac{N_{REC \ \Omega}}{N_{GEN \ \Omega}}$$

4 bins in -t and Q'^2 , 3 bins in E_{γ} , 10x10 bins in the ϕ/θ plane. Bins with $\frac{\Delta Acc}{Acc} > 0.5$ and Acc < 0.05 are discarded (ΔAcc is statistical error).

Fiducial cuts on PCAL included

TCS with CLAS12 at JLai

$\gamma p \rightarrow e^+ e^- p$ cross section and R ratio

Interference cross section

$$\frac{d^4\sigma_{INT}}{dQ'^2 dt d\Omega} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} [\cos(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} \operatorname{Re} \tilde{M}^{--} + \ldots]$$

$$\rightarrow \tilde{M}^{--} = \frac{2\sqrt{t_0-t}}{M} \frac{1-\xi}{1+\xi} \left[F_1 \mathcal{H} - \xi (F_1+F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

BH cross section

$$\frac{d^4 \sigma_{BH}}{dQ'^2 dt d\Omega} \approx -\frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} \left[(F_1^2 - \frac{t}{4M^2} F_2^2) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + (F_1 + F_2)^2 \right]$$

BH cross section diverges at $\theta \approx 0^\circ$ and 180°

Weighted cross section ratio

$$R(\sqrt{s},Q'^{2},t) = \frac{\int_{0}^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^{2}dtd\phi}}{\int_{0}^{2\pi} d\phi \frac{dS}{dQ'^{2}dtd\phi}} \qquad \frac{dS}{dQ'^{2}dtd\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{L}{L_{0}} \frac{d\sigma}{dQ'^{2}dtd\phi d\theta}$$

R' ratio measurement

Weighted cross section ratio

Large dependence on the integration domain. Need a careful check of this dependence using Monte Carlo. Or total BH cs extraction could help in interpreting this observable

Pierre Chatagnon (IJCLab)

ī

TCS with CLAS12 at JLab

Forward Backward asymmetry

Forward-Backward Asymmetry

Concept explored for J/Ψ production [Gryniuk and Vanderhaeghen(2016)]. No prediction for TCS published yet.

$$A_{FB}(heta_0,\phi_0) = rac{d\sigma(heta_0,\phi_0) - d\sigma(180^\circ - heta_0,180^\circ + \phi_0)}{d\sigma(heta_0,\phi_0) + d\sigma(180^\circ - heta_0,180^\circ + \phi_0)} \propto Re ilde{M}^{--}$$

 $\rightarrow\,$ Access to real part of the CFFs with no integration over angles (removes large dependencies on angular acceptance)

A_{FB} projections

A_{FB} measurement

- Forward direction: Integration over $\phi \in [-50^\circ, 50^\circ]$ and $\theta \in [50^\circ, 70^\circ]$
- Backward direction: Integration over $\phi < -130^\circ$ or $\phi > 130^\circ$ and $heta \in [110^\circ, 130^\circ]$
- Each event is weighted by $rac{1}{Acc}$ / Error bars given by propagating $\delta\sigma\propto\sqrt{\sum(1/Acc)^2}$

NLO/LO (solid/dashed line) TCS+BH cs (GK model) doi.org/10.1140/epjc/s10052-020-7700-9

CD proton efficiency correction (in progress) (1)

Use $e(p')\pi^+\pi^-$ reaction, where the missing proton goes in the CD. All the analysis is done using kinematic variables of the missing proton.

Data set: $e\pi^+\pi^-(X)$, cut on the ρ mass in the $m_{\pi^+\pi^-}$ spectrum Simulation set: Events generated with genev, $ep\rho$

4 bins in momentum, 2 bins in heta, 30 in ϕ

Pierre Chatagnon (IJCLab)

CD proton efficiency correction (in progress) (2)

Change in the acceptance calculation

Events with a proton in the CD are weighted by the efficiency correction, the weight for event in the FD is 1 $_$

$$Acc = rac{\sum_{Eff_{Corr}} Eff_{Corr}}{N_{Gen}}$$

Summary

- Use of MVA techniques for positron id necessary and implemented in analysis.
- First values of R' ratio and A_{FB} extracted
- Full fiducial cuts still to be implemented (using trains ?)
- CD proton detection efficiency in progress
- Full detailed systematics still needed
- Interpretation of the A_{FB} still needed
- Analysis note under way (the goal is to start review by the end of the summer)

Bibliography

Oleksii Gryniuk and Marc Vanderhaeghen.

Accessing the real part of the forward $j/\psi - p$ scattering amplitude from j/ψ photoproduction on protons around threshold.

Phys. Rev. D, 94:074001, Oct 2016. doi: 10.1103/PhysRevD.94.074001.

URL https://link.aps.org/doi/10.1103/PhysRevD.94.074001.

Back-up slides

MVA comparison (1)

MVA comparison (2)

NN on electron

Absolute contamination from ROC curve

$$y(x) = \frac{S(x) + x \cdot \beta}{S(1) + \beta} \tag{1}$$

extrapolated it to x = 0:

$$y(0) = \frac{S(0)}{S(1) + \beta}$$
(2)

The Normalized number of TCS events is:

$$y(x_0) = \frac{S(x_0) + x_0 \cdot \beta}{S(1) + \beta}$$
(3)

For a given x₀, $\frac{y(x_0)}{y(0)} - 1$ gives a good estimate of the ratio $\frac{B(x_0)}{S(x_0)}$:

$$\frac{y(x_0)}{y(0)} - 1 = \frac{S(x_0) + x_0 \cdot \beta}{S(0)} - 1 \tag{4}$$

and

$$\frac{y(x_0)}{y(0)} - 1 = \frac{S(x_0)}{S(0)} \left(1 + \frac{x_0 \cdot \beta}{S(x_0)} \right) - 1$$
(5)

$$\frac{y(x_0)}{y(0)} - 1 \simeq \frac{B(x_0)}{S(x_0)}$$
(6)

Mass spectrum

