Polarized ³He in CLAS12 High-Field MEOP Target Status

J. Maxwell

CLAS Collaboration Meeting April 28, 2020

Metastability Exchange and Spin Exchange Optical Pumping

SEOP

- Pump: alkali metals in mixture
- Transfer: spin exchange
- Low pumping rate
- Walls carefully selected
- Needs oven (473 K)
- 100 W laser typical
- Large pressure range (1 to 13 bar)

MEOP

- Pump: metastable population
- Transfer: metastability exchange
- High pumping rate
- Less sensitive to wall interactions
- Temperature above 100 K
- 4 W laser typical
- Limited pressure (~1 mbar)
- Pressure attainable has made SEOP the most attractive tool for JLab
- Neither have historically worked at high field

MEOP Double-Cell Cryo Target: Bates 88-02

- Quasi-elastic asymmetries in 1988, 1993
- MEOP pumping cell at 2 mbar, 300 K
- Cu target cell at 2 mbar, 17 k
- Cu foil beam windows (4.6 μ m)
- Cold surfaces coated with N₂ to reduce depolarization from wall interactions
- 7.2×10^{32} ³He/cm²/s Luminosity w/ 10μ A
- P measurement performed in pumping cell
- *P* in target inferred from rate equations: *P* relaxation and diffusion

MEOP Double-Cell Cryo Target: Bates 88-02

- Quasi-elastic asymmetries in 1988, 1993
- MEOP pumping cell at 2 mbar, 300 K
- Cu target cell at 2 mbar, 17 k
- Cu foil beam windows (4.6 μ m)
- Cold surfaces coated with N₂ to reduce depolarization from wall interactions
- 7.2×10^{32} ³He/cm²/s Luminosity w/ 10 μ A
- P measurement performed in pumping cell
- *P* in target inferred from rate equations: *P* relaxation and diffusion

- Weak hyperfine coupling ⇒ inefficient MEOP?
- Kastler-Brossel Lab at ENS in Paris found by increasing B_0 , MEOP effective at higher p
- Zeeman splitting separates states for laser pumping, also giving convenient transitions to probe for polarization measurement
- We have pursued this technique for a Polarized ³He Ion source for EIC

From Gentile, Nacher, Saam, Walker (2017)

- Weak hyperfine coupling ⇒ inefficient MEOP?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher *p*
- Zeeman splitting separates states for laser pumping, also giving convenient transitions to probe for polarization measurement
- We have pursued this technique for a Polarized ³He Ion source for EIC

He3 Absorption Spectrum at 0.01T

- Weak hyperfine coupling ⇒ inefficient MEOP?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher *p*
- Zeeman splitting separates states for laser pumping, also giving convenient transitions to probe for polarization measurement
- We have pursued this technique for a Polarized ³He Ion source for EIC

He3 Absorption Spectrum at 1T

- Weak hyperfine coupling ⇒ inefficient MEOP?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher *p*
- Zeeman splitting separates states for laser pumping, also giving convenient transitions to probe for polarization measurement
- We have pursued this technique for a Polarized ³He Ion source for EIC

The Idea

Double-Cell Cryo Target

- Polarize at 300 K
- Transfer to 5 K target cell
- Density increase 60×

High Field MEOP

- High Polarization (\sim 60%)
- High magnetic fields (5 T)
- Pressure increase $100 \times$
- MEOP at 1 mbar offers $10,000 \times$ less density than SEOP at 10 bar
- This scheme increases MEOP density by $6,000 \times$
- Reaches CLAS12 max luminosity with 4.5×10^{34} ³He/cm²/s at 2.5 μA

Proposed Target

- Cell volumes: 100 cm³, Cell pressure: 100 mbar, Polarization: 60%
- Beam Current: 2.5 μ A, Luminosity: 4.5×10^{34} ³He/cm²/s at 2.5 μ A
- Must fit in tight space constraint of CLAS12 (~10 cm)

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200 μ m windows
- Coating of H₂ prevents wall depolarization below 6 K (Lefevre-Seguin, 1988)
- Field depolarization no problem
- Beam depolarization: production of ³He₂⁺ (Milner, 1987), but may be counteracted by high field (Bonin, 1988)
- Convection to allow balance between beam depolarization and pumping

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200μ m windows
- Coating of H₂ prevents wall depolarization below 6 K (Lefevre-Seguin, 1988)
- Field depolarization no problem
- Beam depolarization: production of ³He₂⁺ (Milner, 1987), but may be counteracted by high field (Bonin, 1988)
- Convection to allow balance between beam depolarization and pumping

MARATHON target cell

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, $200\mu m$ windows
- Coating of H₂ prevents wall depolarization below 6 K (Lefevre-Seguin, 1988)
- Field depolarization no problem
- Beam depolarization: production of ³He⁺₂ (Milner, 1987), but may be counteracted by high field (Bonin, 1988)
- Convection to allow balance between beam depolarization and pumping

- Cryogenics: Pulse Tube for 2 W at 4.2 K
- Heat load looks to be less than 500 mW
- Al cells, 200μ m windows
- Coating of H₂ prevents wall depolarization below 6 K (Lefevre-Seguin, 1988)
- Field depolarization no problem
- Beam depolarization: production of ³He₂⁺ (Milner, 1987), but may be counteracted by high field (Bonin, 1988)
- Convection to allow balance between beam depolarization and pumping

Transverse Polarized ³He in CLAS12?

- Transverse HD-Ice: bulk superconductor to cancel 2 T and create a 1.5 T holding field
- Cond. approved: C12-11-111, C12-12-009, C12-12-010
- Use same concept, but holding field ~50 G
- Pumping cell in longitudinal field
- Rotate spin adiabatically in transit to target cell
- Needs development

MgB2 cylinder: 86 mm Ø 250 mm long 7 mm wall

 $\begin{array}{l} 1.25 \text{ T transverse magnetization} \\ 2.0 \text{ T axial shield} \\ 5x10-3 \text{ uniformity } (\text{Y}_{20}/\text{Y}_{00}) \\ \text{over 20 mm radius sphere} \end{array}$

Image: M. Lowry

Transverse Polarized ³He in CLAS12?

- Transverse HD-Ice: bulk superconductor to cancel 2 T and create a 1.5 T holding field
- Cond. approved: C12-11-111, C12-12-009, C12-12-010
- Use same concept, but holding field \sim 50 G
- Pumping cell in longitudinal field
- Rotate spin adiabatically in transit to target cell
- Needs development

Field along Cylinder Axis

Transverse Polarized ³He in CLAS12?

- Transverse HD-Ice: bulk superconductor to cancel 2 T and create a 1.5 T holding field
- Cond. approved: C12-11-111, C12-12-009, C12-12-010
- Use same concept, but holding field \sim 50 G
- Pumping cell in longitudinal field
- Rotate spin adiabatically in transit to target cell
- Needs development

Outlook

- Meeting with Hall B, Target Group technical staff in 2019: idea is sound
- Design in progress for tests of convection
- Target Group working with M. Lowry on his bulk superconductor Opera simulations
- DOE early career grant proposal to investigate full system, including transverse and UITF studies, submitted in March
- JLab 2020 LDRD proposal in progress, three year program

Test Target LDRD Procurement Budget

- 7T Magnet: \$160,000.00
- Pump Laser (2): \$28,500.00
- Probe Laser (2): \$24,790.60
- Cryopump: \$12,400.00
- Signal Generator: \$3,900.00
- RF Amplifier: \$2,100.00
- Pfieffer Dry Turbopump Set: \$7,995.00

- Pulse Tube: \$63,790.00
- Wavelength Meter: \$27,100.50
- Cryostat: \$45,000.00
- Pfieffer Turbopump Set: \$19,500.00
- Glass cells: \$20,000.00
- Optics: \$10,000.00
- Vacuum equipment: \$20,000.00
- Thermometry: \$10,000.00

Total: \$508,000.00

Thank you for your attention!

Parameter	Bates 88-02 Target Achieved	CLAS12 Target Proposed
Pumping cell pressure (mbar)	2.6	100
Pumping cell volume (cm^3)	200	120
Target cell volume (cm^3)	79	100
Target cell length (cm)	16	20
Number of atoms in pumping cell	$1.2 imes 10^{19}$	3×10^{20}
Number of atoms in target cell	6×10^{19}	$1.5 imes 10^{22}$
Holding field (T)	0.003	5
Polarization	40%	60%
Incident electron beam energy (GeV)	0.574	10
Cell temperature (K)	17	5
Target thickness $({}^{3}\text{He}/\text{cm}^{2})$	1.2×10^{19}	3×10^{21}
Beam current (μA)	10	2.5
Luminosity $(^{3}\text{He/cm}^{2}/\text{s})$	$7.2 imes 10^{32}$	$4.5 imes 10^{34}$

High Field MEOP at 1 mbar

Metastability Exchange Optical Pumping

- 1963, Colgrove et al (TI)
- Pure ³He, \sim 30 G field
- Discharge promotes states to 2³S₁
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires ~2 mbar, >100 K
- Effectively 10⁵ faster pump rate (but 10⁴ lower pressure)

Metastability Exchange Optical Pumping

- 1963, Colgrove *et al* (TI)
- Pure 3 He, \sim 30 G field
- Discharge promotes states to 2³S₁
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires ~2 mbar, >100 K
- Effectively 10⁵ faster pump rate (but 10⁴ lower pressure)

CLAS12 Target Constraints

- Getting a conventional polarized ³He target in CLAS12 is tricky:
 - Remove solenoid, OR
 - Put target upstream of solenoid, OR
 - Transfer polarized gas into solenoid
- To operate in the standard configuration:
 - Fit inside solenoid (10 cm diameter space to work with)
 - Operate at 5 T

