Photoproduction of the $f_2(1270)$ meson using the CLAS g12 data

Miranda Carver, Andrea Celentano, Ken Hicks

Ohio U and INFN/Genova

CLAS Collaboration Meeting, April 29, 2020

Motivation: what is the nature of the $f_2(1270)$?

- Three possible scenarios:
 - 1. Pure quark-model (q-qbar) state with J^{PC}=2⁺⁺: PDG and LQCD
 - 2. Dynamically generated (ρ - ρ molecule): Theory model by Oset et al. (2009)
 - 3. Mixture with tensor glueball (2⁺⁺): Theory by Shen and Yu (1989)
- Calculations available for photoproduction:
 - 1. Xie and Oset : Eur. Phys. J (2015) compared to g11 data ($\pi^+\pi^-$) from 2009
 - 2. JPAC: Regge-exchange model, developed for $a_2(1320)$ photoproduction

Quark model description of the $f_2(1270)$

Table of Quark Model states (C. Meyer lecture notes)

State	S	L	J	P	C	J^{PC}		Me	sons		Name
${}^{1}S_{0}$	0	0	0	-	+	0^{-+}	π	η	η'	K	pseudoscalar
${}^{3}S_{1}$	1	0	0	-	-	1	ρ	ω	ϕ	K^*	vector
${}^{1}P_{1}$	0	1	1	+	-	1^{+-}	b_1	h_1	h'_1	K_1	pseudo-vector
${}^{3}P_{0}$	1	1	0	+	+	0^{++}	a_0	f_0	f'_0	K_0^*	scalar
${}^{3}P_{1}$	1	1	1	+	+	1^{++}	a_1	f_1	f'_1	K_1	axial vector
${}^{3}P_{2}$	1	1	2	+	+	2^{++}	a_2	f_2	f'_2	K_2^*	tensor

Tensor meson nonet: $J^{PC} = 2++$ includes: a₂(1320), f₂(1270) and f₂'(1525). Crystal Barrel Collab. (Phys. Lett. B, 1999)

What we measured at CLAS

- Reaction: $\gamma p \rightarrow f_2 p \rightarrow \pi^0 \pi^0 p \rightarrow 4\gamma p$
 - $2\pi^0$ decay restricted to J^{PC} = 0⁺⁺ and 2⁺⁺ (due to identical particles)
- Data set: g12, proton target with $E_g = 3.6-5.4 \text{ GeV}$
- Analysis procedures: same as for $\eta \pi^0 \rightarrow 4\gamma$ (approved analysis)
- Previous photoproduction measurements:
 - 1976 Daresbury: backward-angle ρ and f_2 photoproduction (2.8-4.8 GeV)
 - 1992 OMEGA (CERN): f₂(1270) and f₀(980), various beams (65-175 GeV)
 - 2009 CLAS: Battaglieri et al., g11 data, $\pi^+\pi^-p$ final state, PWA extraction
 - Large uncertainty for $f_2(1270)$ due to background from $\rho \rightarrow \pi^+\pi^-$ (large width)

CLAS g11 data compared with theory model

Models A,B,C: ρNN vertex vector or vector+tensor; propagator: ρ-only or Regge trajectory. Xie and Oset, Eur. Phys. J. **51**, 111 (2015).

Model: vector meson - vector meson interaction based on local hidden gauge Lagrangians, which shows poles in the scattering plane. The large $\rho-\rho$ interaction creates strong binding for J=2.

Basic idea: $f_2(1270)$ is a $\rho-\rho$ "molecule".

g12 analysis: overlap with $\eta \pi^0$ analysis

- Same run selection, same event skim (exclusive: 4γ + proton)
- Same 4-C kinematic fit
- Same trigger efficiency corrections
- Same Monte Carlo procedure (but now $\pi^0\pi^0$ event generator)
- All approved g12 procedures (momentum, E_{γ} corr., etc.) are followed
- Unique to this analysis:
 - 2γ Mass cuts to isolate $\pi^0\pi^0$ final state
 - Peak fitting to get f₂(1270) yield
 - Systematic studies

Tuning: Confidence Level for $p\gamma\gamma$ final state

Applied: Confidence Level for pyyyy final state

Ordered photon pairs: $M(2\gamma)$ vs $M(2\gamma')$

$E_{\gamma} > 3.5 \text{ GeV to remove N*'s (with M<2 GeV)}$

 $M(\pi^0\pi^0)$ (GeV/c²)

One kinematic bin: E_{v} =3.5-4.5 and -t=0.4-0.7

Fits to get the $f_2(1270)$ yield E_{γ} = 3.6-4.0 GeV $E_{v} = 4.0-4.4 \text{ GeV}$ -t = 0.1-0.2 -t = 0.2-0.3 -t = 0.3-0.4 -t = 0.4-0.5 -t = 0.5-0.6

 $M(\pi^0\pi^0)$ (GeV/c²)

Cross sections from g12 analysis

Overlaying Cross Sections 3.6 - 5.4 GeV

Compared with g11, where PWA was needed, the error bars (statistical) are about 5 times smaller.

The turn-over at -t=0.35 indicates the presence of axial-vector exchange in the Regge calculation.

Systematic Uncertainties

Variation of Cut	Percent change (average)
Target length/density	0.5% (g12 procedures note)
Photon Flux	5.7% (g12 procedures note)
Trigger Efficiency	2.8% ($\eta\pi^0$ analysis note)
Acceptance (f ₂ generated flat in phase space)	2-3%
Kinematic Fit (CL 10% or 15%)	2.0%
Mass cuts on p0 (2.5 σ to 3.5 σ)	2-4%
Fitting function (with/without f ₀ (1370) included)	4.1%
f ₂ (1270) B.R. uncertainty	2.2% (PDG)

Added in quadrature, the total systematic uncertainty is about 9-10%.

Theory calculations

- Calculations were done by Vincent Mathieu (JPAC/UCM)
 - Uses Regge-exchange formalism.
 - Predictions shown for CLAS a₂(1320) paper (A. Celentano et al.)
 - Isospin relations can be used for the current $f_2(1270)$ cross sections.
 - We have preliminary curves, but can't show these yet.
- Published calculations by Xie and Oset
 - Linear in log($d\sigma/dt$) vs -t, without any turn-over
 - No predictions for relative B.R. to $\pi^+\pi^-$ compared with $\pi^0\pi^0$ decay of f₂.
 - The decay of $\rho \rightarrow \pi^0 \pi^0$ is forbidden; not clear about decays of $\rho \rho$ molecule.

Summary

- We have completed an analysis note for $f_2(1270)$ photoproduction
 - Uses the g12 data, which has well-defined procedures.
 - Follows on to the already-approved exclusive 4 γ final state of $\eta\pi^0$ analysis.
 - No background from ρ -decay allows clean extraction of $f_2(1270)$ yield.
 - Differential cross sections $d\sigma/dt$ are the primary result.
- What do we learn?
 - Regge exchange model does a good job describing the data (not yet shown)
 - Our data will constrain the parameters of this model
 - Can look at predictions for circular polarization observables
 - Because $\pi^0\pi^0$ and $\pi^+\pi^-$ give consistent cross sections, it seems unlikely that the f₂(1270) has a ρ - ρ molecular structure.
- This analysis is based on a summer undergrad project by M. Carver