

Hexaquarks at CLAS12

Matthew Nicol

University of York Hadron Group: Mikhail Bashkanov, Matthew Nicol, Geraint Clash, Dan Watts, Nick Zachariou

Introduction

data

d*(2380) is the first hexaquark supported by experimental data [PRL **106**, 242302, (2011)] [PRL **112**, 202301, (2014)] [PRL **124**, 123001, (2020)

• Studies have been performed on this hexaquark

Expand our studies of hexaquarks using the RG-B

Motivation

Hadrons are bound quark systems (QCD)

Several new states have now been found including four-, five- and six-

quark states

Internal structure? (molecule, multiquark, ...)

Internal structures <-> many body effect in QCD

Other members of the d*(2380) multiplet -> better understanding

Antidecuplet

d*, SU3 antidecuplet

Other members of the antidecuplet?

RG-B data is essential!!!

Analysis note for these studies: <u>https://clasweb.jlab.org/wiki/images/1/18/York_CAA.pdf</u>

Internal Structure

Molecule

• In molecular state pion exchange binds the two baryons together

D

ndd

 π

n

Heavier (more strangeness) -> stronger binding

Plan

- Exploratory analysis
 - Investigate d_{sss} signal
 - Invariant mass distributions <-> binding energy
- Monte Carlo simulations will be run with detector responses
 Better idea of efficiencies
 - Study background contributions
- Observables
 - Mass and Widths
 - Cross sections
 - Angular distributions (spin/parity)

Candidate to study - d UNIVERSITY SSS Lambda identification is crucial! d n $\Delta \Delta \bigoplus d^*(2380)$ d d $d_s(2530)$ $\Delta \Sigma^*$ р n n $d_{ss}(2680)$ π^{-} $\Delta \Xi^*$ 9 $d_{sss}(2820)$

Analysis Completed

Analysis on proton data

Strangeness 1

Strangeness 2

• Strangeness 3

 π^{-}

 π^{-}

Analysis Process

Exclusivity cuts

Missing Mass

Missing Momentum

Strangeness 1 Analysis

Lambda well identified with exclusivity cuts

Missing Mass

Invariant Mass

Strangeness 2 Analysis

Cascade well identified

Missing Mass

Conclusion

Analysis code tested and ready for RG-B data

Can identify well the final state products expected from d_{ss}⁻⁻

• Fantastic research opportunity in this field!

 Analysis note for these studies: <u>https://clasweb.jlab.org/wiki/images/1/18/York_CAA.pdf</u>

Simulations performed d Acceptance [%] the and π in FD % 60 π^{*}_{sc}, π_c, p , and p , in FD t_{io}, π_{io}, p., π^{*}_A, and p., in FD. Acceptance π_{e^o}, p_a, π⁺_A, p_a and π_A in FD , n', p., n, and n, in FD Generated phase space 40 20 Applied weights including: q² dependence **Breit Wigner** Ο $M(\Omega n \pi)$ [GeV] $M(\Delta^{++} \Sigma^{*-})$ [GeV] Blue - K⁰ in FD

- Pink K⁰ and 2 p in FD Black - K⁰, 2 p and π^+ in FD Green - K⁰ and Δ in FD Red - K⁰, Δ and Σ in FD
- Plotted acceptance

Red - 3 K⁺ in FD Black - 3 K⁺ and p in FD Blue - 3 K⁺, p and K⁻ in FD Green - 3 K⁺, p, K⁻ and 2 π^- in FD

Background for dss

