CLAS Collaboration Meeting – April 2020 Nuclear Physics Working Group Joint Session

Update on Omega Hadronization Studies

Andrés Bórquez Universidad Técnica Federico Santa María

Tuesday, April 28, 2020

Outline

- I. Introduction
- 2. The experiment
- 3. Particle Identification
- 4. Kinematic variables and observable
- 5. Binning
- 6. Electron Ratio
- 7. Background Subtraction
- 8. Results
- 9. Simulations
- 10. Next steps

Introduction

- This analysis follows a line of investigation,
 - π^0 analysis from Taisiya Mineeva
 - η meson hadronization from Orlando Soto
- First studies ever on omega meson hadronization.
- ω(782):
 - Quark content: $(u \, \overline{u} + d \, \overline{d})$
 - Mean lifetime: 7.75 × $10^{-23}[s]$
 - Decay channel: $\omega \rightarrow \pi^+ \pi^- \pi^0 \rightarrow \pi^+ \pi^- \gamma \gamma$

ωDE	ECAY MODES	Fraction (Γ_i/Γ)			
Γ ₁	$\pi^+\pi^-\pi^0$	(89.3 ± 0.6) %			
Γ ₂	$\pi^{0}\gamma$	(8.40±0.22) %			
Γ ₃	$\pi^+\pi^-$	(1.53±0.06) %			

• Main difficulty: low statistics analysis.

EG2 run: EO2-104 experiment

Double target system composed of a solid heavy target A(C, Fe, Pb) and a liquid target D (Deuterium) positioned simultaneously in the beam line.

Main feature: same luminosity for different nuclei!

Electron Identification

The kinematic region in the DIS regime is: $Q^2 > 1$, W > 2, $y_B < 0.85$

Q2:Nu

Pion Identification

Update on Omega Hadronization Studies

 $M^{2}(\pi^{+}\pi^{0}) \text{ GeV}^{2}$

$\boldsymbol{\omega}$ selection

Selected events must accomplish: $N_{\pi^+} \ge 1 \land N_{\pi^-} \ge 1 \land N_{\gamma} \ge 2$ And keep all posible combinations: $\binom{N_{\pi^+}}{1} \times \binom{N_{\pi^-}}{1} \times \binom{N_{\gamma}}{2}$

Kinematic Variables and Observable

- To continue, we must define the following DIS kinematic variables in the laboratory frame.
 - $Q^2 = 4 E_b E' \sin^2\left(\frac{\theta}{2}\right)$: virtuality of the probe electron.
 - $\nu = E_b E'$: energy transferred from the electron to the target.
 - $z = E_h/\nu$: fraction of the virtual photon energy carried by the produced hadron.
 - $p_T^2 = p_h^2 (1 \cos(\theta_{PQ}))$: transversal momentum w.r.t. virtual photon direction.
- Observable: Multiplicity Ratio.
 - For our case: $h = \omega$, $A = \{Carbon, Iron, Lead\}$ and $D = \{Deuterium\}$.

$$R_h^A \equiv \frac{\left(\frac{N_h(Q^2, \nu, z, p_T^2)}{N_e^{DIS}(Q^2, \nu)}\right)_A}{\left(\frac{N_h(Q^2, \nu, z, p_T^2)}{N_e^{DIS}(Q^2, \nu)}\right)_D}$$

Binning

Z	0.5	0.55	0.60	0.67	0.76	1.0
p_T^2	0.0	0.05	0.11	0.20	0.36	١.5
Q^2	1.0	1.19	1.38	1.62	2.00	4.0
ν	2.2	3.23	3.55	3.79	4.0	4.2

Electron Ratios

From the previous MR definition,

$$R_h^A \equiv \frac{\begin{pmatrix} N_h(Q^2, \nu, z, p_T^2) \\ N_e^{DIS}(Q^2, \nu) \end{pmatrix}_A}{\begin{pmatrix} N_h(Q^2, \nu, z, p_T^2) \\ N_e^{DIS}(Q^2, \nu) \end{pmatrix}_D}$$

we can extract the Electron Number Ratio:

$$\mathrm{ER} \equiv \frac{\left(N_e^{DIS}(Q^2, \nu)\right)_D}{\left(N_e^{DIS}(Q^2, \nu)\right)_A}$$

Background Subtraction

In order to enhance the signal, we use the **Invariant Mass Difference**. $IMD \equiv IM(\omega) - IM(\pi^+) - IM(\pi^-) - IM(\gamma\gamma)$

Background Subtraction - II

Background Subtraction - III

 $IMD(\pi^{+} \pi^{-} \pi^{0})$ for D in (0.67 < Z < 0.76)

To count the ω number, we make a composite extended fit around its peak.

- Gaussian for the signal
- Ist order polynomial for the bkg

Software used: **RooFit**. Error estimation: **MINOS**. Fit method: extended maximum likelihood estimation.

Tools:

- constraint the σ parameter.
- uncertainty bands.
- pull distribution.

$$pull(x) = \frac{data(x) - fit(x)}{error_{data}(x)}$$

Parameters - I

Result of the parameters obtained directly by RooFit. Increasing in z bin for each target. Gray horizontal lines represent average of the parameter values.

$$SN \equiv \frac{N_{\omega}(-3\sigma, 3\sigma)}{N_{bkg}(-3\sigma, 3\sigma)}$$

Parameters - II

Results - I

Multiplicity Ratio: ω

Results - II

Multiplicity Ratio: ω

Acceptance Correction

- Correction that covers the imperfections of the detector, such as: detection, track reconstruction and event selection efficiencies.
- Simulation chain:
 - LEPTO: MC event generator
 - GSIM
 - GPP

CLAS reconstruction chain

- user_ana
- ClasTool
- Condition: at least one omega meson must have been generated
- So far, there is this quantity of generated events.
 - D:800M (need 850M more!)
 - C: 335M (ready to filter!)
 - Fe: 405M (ready to filter!)
 - Pb: I25M (ready to filter!)

Comparison (Data vs Simulations) - I

Comparison (Data vs Simulations) - II

Reconstructed events sample from 12M generated events.

Next steps

- Acceptance correction
- Radiative corrections
- Systematic studies
- Submit η and ω CLAS Analysis Note

Thank you for your attention!

Backup

Results without Background Subtraction

minary

3.4

v (GeV)

3

3.8

4.2

2.6

These results were obtained from the fits, just by applying a 3σ cut around the ω peak.

It integrates both background and signal in that range.

Missing Mass

