Central Tracking Task Force

Goal

To identify issues in current CLAS12 central tracking software and propose a path forward to obtain the maximum efficiency, resolution, and speed.

Members

- Yuri Gotra (PI)
- Veronique Ziegler (core)
- Mac Mestayer (core)
- Maurizio Ungaro (external, MC expert)
- Rafayel Paremuzyan (external)
- Maxime Defurne (external)

Charge

- Assess the current CLAS12 central tracking efficiency, resolution, and execution speed
- Assess limitations in hardware, reconstruction software, calibrations, tracking algorithms, ...
- Quantify the expected improvement in efficiency, resolution, and execution time provided by the proposed solutions
- Define a work plan to move forward provide a time chart and milestones for:
 - 1. assessment
 - 2. definition of alternative solutions
 - 3. validation (data and Monte Carlo)
 - 4. implementation in the current reconstruction framework
- Estimate resources needed in the different phases of the project
- Evaluate synergies with other projects at the lab providing a list of shared resources and common goals

Resources

- Time: 3 months (March May)
- Deliverable: 2 page reports, wiki page with full documentation and minutes of the meetings and presentations

Assessment of Hardware Limitations

• Technical specs for the CVT (original SVT-4 design)

- 5% momentum resolution at 1 GeV (50 μ m sensor spatial resolution)
- 5 mrad azimuthal angle resolution
- 10÷20 mrad polar angle resolution (due to 3° strip stereo angle)
- 90% tracking efficiency at 10³⁵ cm⁻² luminosity
- Operational performance of the CVT detector systems
 - With BMT expected polar angle resolution is 5 mrad due to 90° stereo angle
 - Measured SVT spatial resolution is better than the specs (30÷50 μ m)
 - Measured BMT spatial resolution is within the specs (150÷200 μ m)
 - Number of masked (hot) channels is within a fraction of a percent
 - Noise performance is within the design estimates
 - Misalignments of the SVT fiducials are hundreds of microns in X, Y, Z as designed
 - SVT sensor-to-sensor misalignments are within 10 μ m (most 1÷3 μ m)
 - SVT side-to-side misalignments are on the order of fiducial misalignments
 - BMT tile-to-tile misalignments are within 1.5 mm
 - CVT performance from realistic MC (merged background, 50 nA) matches the specs: resolution (momentum 5%, angular 5 mrad, Z vertex 500 μ m), efficiency up to 90%
- Design changes
 - Tungsten shield (51 μ m) on the scattering chamber to reduce γ background
 - Reduced SVT operation temperature to ensure stable operation and prevent reverse annealing (unplanned exposure during first beam tuning)
 - Active SVT sensor cooling
 - Improved detector insulation
 - Redesigned purging system

Detailed detector design and performance in the SVT and Micromegas NIM papers

Assessment of Software

General comments on CVT software development and resources

- SVT geometry implemented by Maurizio and Peter
- SVT-4 background rates, occupancy, radiation damage were simulated by Maurizio
- SVT-4 tracking code has been developed by Veronique
 - validated on MC, performance match technical specs
- BMT geometry implemented by Saclay group and Maurizio
- CVT decoding implemented by Saclay group, Gagik, Raffaella, Nathan
- SVT-BMT tracking has been developed by Veronique
- Performance on ideal MC geometry matched technical specs
- On the CVT tracking validation stage Veronique was assigned to development of the DC tracking code (CVT priority de-weighted due to first publication schedule)
- Due to the issues with tracking efficiency at nominal luminosity pattern recognition
 algorithm was replaced with Cellular Automaton by Francesco
- Millepede-based CVT alignment code has been developed by Jerry
- Due to the issues with Millepede alignment package Maxime and Francesco volunteered to work on CVT alignment and later started development of the CVT tracking package based on Veronique's package
- Contribution of 2 FTE (Maxime, Francesco), a number of issues with original tracking were solved, some problems are still remaining, alignment package needs further work
- Tracking validation: CVT team, Raffaella, Stepan, Francois
- Momentum resolution of the **misaligned** tracker is worse than 10%
- Set path forward to develop the tracker alignment software, the **most critical step** to ensure that CVT tracking is matching detector performance

Insufficient resources at critical tasks lead to stress for key contributors

Assessment of Tracker Alignment

Alignment Challenges

- Merging two different detectors
- Large (w.r.t. forward tracking) number of components (102 elements)
- SVT module thickness (3 mm)
- Space between BMT layers
- Alignment strategy
 - CVT components
 - 18 BMT tiles
 - 84×3 SVT sensors (no side-to-side precise CMM alignment)
 - SVT
 - 3 fiducials on each module + fiducials on the SVT support tube
 - Precise CMM alignment of the sensors to module fiducials
 - CMM alignment sensor-to-sensor within few μ m during module assembly
 - FaroArm survey of all fiducials, 20 μ m precision, survey data in the DB
 - Alignment of the SVT support tube with FaroArm
 - BMT
 - Fiducials on the BMT support tube
 - CVT
 - BMT alignment to the SVT fiducials with FaroArm during tracker integration
 - CVT alignment to the beamline during installation in the hall
 - Track-based alignment
- Alignment samples
 - Cosmic muons
 - Large samples collected during tracker integration, commissioning, and operation
 - Decoded and reconstructed data on the SVT RAID disk
 - No background, double number of hits, good for relative alignment
 - Lower occupancy for horizontal tracks (beam right/left barrel sides)
 - Zero field empty target runs
 - Low luminosity runs (4-5 nA beam current)
 - Taken during each run period (maintenance, CVT and target position changed)
 - Adequate statistics for alignment
 - Decoded and reconstructed data on the SVT RAID disk
 - Can be used for relative alignment of CVT vs. DC

Assessment of Alignment Algorithms

- Millepede package (5 years of development)
 - Original track-based alignment strategy
 - Developed by Jerry and Peter
 - SVT geometry and misalignments DB implemented and tested on MC
 - Alignment of Type 1 (vertical) SVT tracks validated on MC and cosmic samples
 - Issues with Type 2 SVT tracks, development stopped
 - Affected by issues with residual calculation, CVT geometry, and track fitting
 - Need merging SVT and BMT in the algorithm
 - Further development would require expertise with Millepede code
- Saclay group package (the only available option now)
 - Developed by Maxime
 - Standalone package using custom straight track reconstruction package
 - 3 rotation and 3 translation D.O.F.
 - BMT tiles
 - SVT modules
 - SVT vs. BMT
 - CVT
 - Validated on the MC samples
 - Good improvement of CVT residuals in data
 - Fast convergence
 - SVT side-to-side translation in XY plane implemented
 - Issues handling large number of SVT components
 - Can converge to local minima
 - Moving tracks, not sensors
- Kalman Filter (using CMS approach, under evaluation)

Path Forward: Assessment of Tracking

Tracking packages

- Helical track reconstruction (default package)
 - Developed by Veronique, original SVT-4 code adapted to SVT+BMT tracker
 - Cellular Automaton pattern recognition developed by Francesco
 - Fast
 - Resilient to misalignments
 - Need the beam position as input (bias)
 - Remaining dependencies possibly related to track intercept issues
 - Not handling misalignments corrections
 - Using SVT regions in the fit
 - MC SVT residuals ~70 μm
- Helical track reconstruction (exploratory package)
 - Developed by Maxime and Francesco based on Veronique's code
 - Fully unbiased
 - Robust track intercept computations
 - Handle alignment corrections
 - Using SVT clusters in the fit
 - MC SVT residuals ~30 μ m
 - More sensitive to detector misalignments
 - Slower to execute on data (might be improved by using Gagik's matrix inversion)
 - Developers are no longer available for coding
- Straight track reconstruction (default package)
- Straight track reconstruction (Maxime's package)

Merging strategy is in the works

Path Forward: Alternative Solutions

Alignment

- Using Kalman Filter alignment algorithm
 - E. Widl and R. Fruhwirth "A Large-scale Application of the Kalman Alignment Algorithm to the CMS Tracker", CHEP'07, Journal of Physics 119(2008) 032038
 - Avoid inversion of large matrices
 - Tested on the large-scale CMS silicon tracker (587 TPB, 1654 TIB, 3884 TOB modules aligned)
 - Split alignment steps using BST or BMT as external reference
 - Reduced computation time and memory usage
 - Local CLAS expertise with Kalman Filter (Veronique, Maxime)

• Tracking

- Artificial Intelligence
 - Apply machine learning algorithms on the data, reconstruct recorded patterns of tracks, associate each hit with one track
 - Wealth of possible ML techniques (NN, Convolutional NN, Recurrent NN, reinforcement learning, clustering techniques, Monte Carlo Tree Search ...)
 - Fast growing ML community, good opportunity to team-up
 - Local expertise in machine learning (Gagik et al.)

Synergies With Other Projects

Common goals with other CLAS Task Forces

- CLAS12 Software
 - Central tracking and geometry service are listed as high priority tasks
- Analysis Framework
 - Kinematic fitting, momentum corrections, fiducial cuts, vertexing
- Forward Tracking
 - Algorithms for efficiency, resolution, vertexing
- BG Merging and Efficiency
 - Realistic MC simulations, understanding tracking efficiencies
- High Lumi
 - Studies essential for understanding CVT performance in future data taking
- Nuclear Target
 - Background rates, integrated doses, occupancies, MC tuning
- Artificial Intelligence
 - Pattern recognition, speed up track reconstruction
- Shared Resources
 - Manpower
 - Members of the central tracking TF are also contributing to other CLAS TFs
 - Software validation tools
 - Code development
 - Common algorithms can be used (i.e. tracking efficiency)
 - MC samples can be shared among the TFs

Coordination of activities is essential for success

Path Forward: Alignment

- Converge on alignment algorithm
- The largest source of misalignments
- Most important D.O.F.
- BMT internal misalignments
- SVT vs. BMT misalignments, dominant contribution
- CVT vs. FTrk misalignment
- Beam position corrections
- Global CVT alignment
- Effects on resolution
- Validation of the CVT survey data
- Develop and validate alignment procedure

Path Forward: Hardware Limitations

- Analyze results of the nuclear target test
 - Dose rates and TID expected (from neutron and gamma monitors, leakage current trends)
 - Comparison with FLUKA and GEANT predictions
- FSSR2 tolerance to the voltage difference at the preamp input (pinhole in the coupling capacitor)
- Study detection efficiency in the SVT sensors with pinholes
- Effects of changing of the SVT depletion voltages
- SVT discriminator threshold settings
- Channel status in CCDB
- Evaluate options for better CVT thermal insulation

Path Forward: Tracking and Validation

- Momentum and angular resolution using elastic peak, mass resolution with exclusive channels
- Bias in theta
- 90-degree theta peak for low momenta tracks with missing hits
- Study seeding algorithm inefficiencies with background
- Pattern recognition strategies, reducing combinatorics and event processing time
- Handling high multiplicity events
- Improving background hit rejection algorithm using timing information
- Energy loss corrections
- SVT standalone tracking
- Validating primary vertex reconstruction
- Reconstruction of displaced/secondary vertices
- Validation procedures and reference plots
- Momentum and angular resolution using elastic peak, mass resolution with exclusive channels
- Efficiency definitions and methods
- Efficiency studies using common CVT-DC tracks
- Efficiency studies using data-only approach and realistic MC samples
- Validation of processing speed for the new tracking code
- Validation of the straight tracking code

Resource Estimate For Different Phases

- Identify available resources for CVT tracking and alignment tasks
 - Required expertise
 - Avoid double/triple/... counting resources (i.e. FTrk 1.2 FTE in CY2020)
 - Code development
 - Veronique (assigned to many tasks in other projects)
 - Rafayel? (now 30% online, 30% fiducial cuts)
 - Maxime, available for advising on tracking and alignment, not as developer
- Where to put resources
 - Assigning priorities
 - Coordinate with CCC
- Collaboration support
 - Task outsourcing (topics where external contribution would be helpful)
 - Mostly validation tasks which do not require development of the tracking code
 - Interest in the CVT tracking
 - If your analysis requires hadron reconstructed in the central tracker, consider contributing to CVT validation tasks

Milestones and Task Length Estimate

Critical step for CVT alignment algorithm development

- CLAS geometry package (joint effort with Software TF)
 - Interfaces and methods for detector implementation and misalignments by 06/01/20
 - Need resources to implement CVT detector geometry
- High priority tasks (to be complete by next production cooking)
- Track-based alignment
 - Development and validation of algorithm
- Merging two tracking packages
- Tracking efficiency at nominal luminosity and background rejection
- Momentum and angular resolution

Medium priority tasks

- Reducing event processing time
- Reconstruction of primary and secondary vertices
- Lorentz angle corrections
- Estimate SVT longevity based on results of the nuclear target test

Path Forward: Implementation

Current CVT development activity

- Merging strategy for two tracking packages (start from the default or exploratory package)
- Standardization of the helix definition for the pattern recognition and Kalman Filter
- Initialization of the covariance matrix and Kalman Filter convergence
- Validation of Kalman Filter and possible extraction into a common library
- Improving the track propagation to the surface algorithm
- Implement and validate current official method of computing residuals
- Study the effect of track propagation in the magnetic field on the residuals
- Handling of the misalignments implemented
- SVT standalone track reconstruction implemented
 - Validation in progress (SVT residuals up to 30 μ m on low-lumi data)
 - Effect of the SVT survey misalignments on residuals
- SVT and BMT channel status in CCDB