Unfolding Λ Hadronization using CLAS EG2 Data: Updates and Outlook

Taya Chetry Mississippi State University

CLAS Collaboration Meeting 04/28/2020

Physics Observables

• Multiplicity ratio:

$$R_{\rm A}^{h}\left(\nu, Q^{2}, z, p_{T}, \phi\right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm D}}$$

Hadronization process

Transverse momentum broadening:

$$\Delta P_T^2 = \left\langle P_T^2 \right\rangle_A - \left\langle P_T^2 \right\rangle_D$$

D = Liquid Target Nuclei A = Solid Target Nuclei

- Why study them?
 - The hadronization timescales, i.e., production and formation times.

~ 0

- Parton energy loss (related to the p_T broadening).
- Hadron attenuation (related to R_A^{h}).

CLAS EG2 Dataset

- Targets: Deuterium, Carbon, Iron, Lead, Tin, Aluminum.
- Deuterium and solid target in beam simultaneously for reduced run-time systematics:

3 CLAS Collaboration Meeting

Taya Chetry

Reaction Channel and Particle Identification

- $e + A \rightarrow e' + \Lambda$; where $\Lambda \rightarrow \pi^{-} + p$
 - e-, π⁻ : (Method: CLAS-NOTE 2012-001)
 - **p** : Matching signal in Drift chamber and Scintillator Counters. Momentum dependent time-of-flight cut.

e

- Kinematic Cuts
 - $W > 2 \text{ GeV} \rightarrow \text{to avoid contamination from resonance region.}$
 - $Q^2 > 1 \ GeV^2 \rightarrow$ to probe nucleon substructure.
 - y < 0.85 (based on HERMES study) \rightarrow to reduce the size of radiative effects.

CLAS Collaboration Meeting

Taya Chetry

Proton Ionization Energy Loss Correction

- Energy loss, $dE = E_{p,GEN} E_{p,REC}$
- A continuous parametrization for the energy loss correction has been developed/extracted as a function of proton momentum.

dE vs P_{Rec} for target: Fe

5

Taya Chetry

Beam Energy Correction (using ep elastic reaction, H_2 Dataset)

• Beam energy:

$$E_0 = \frac{M_p}{1 - \cos \theta_e} \left(\cos \theta_e + \frac{\sin \theta_e}{\tan \theta_p} - 1 \right)$$

where M_p is mass of proton and θ is the polar angle.

- Calculate θ_e assuming θ_p is correct. Compare with measured θ_e as a function of ϕ_{ep} .

Taya Chetry

Beam Energy Correction (using ep elastic reaction, H_2 Dataset)

• Comparison

Electron Momentum Corrections

- Using elastic events from DIS events, coplanar e- and p are selected.
- Electron energy: $E_f = \frac{E_i}{1 + E_i(1 \cos \theta_e)/M_p}$

• Extract $f(\phi_e)$ and $g(\theta_e)$: $P_{e,calc}$

$$\frac{P_{e,calc}}{P_{e,meas}} = f(\phi) \times g(\theta)$$

 $m{E}_i$ is the beam energy calculated from corrected scattering angles.

References:

1. EG2 Data-Mining Analysis Note (B. Schmookler) 2018

- 2. Kinematic Corrections for CLAS (K. Park, V. Burkert, L. Elouadrhiri, W. Kim) 2003
- 3. Electron Momentum Corrections for CLAS at 4.4 GeV (D. Protopopescu, F.W. Hersman, M. Holtrop, S. Stepanyan) 2001

Taya Chetry

Electron Momentum Corrections $(p_{e, corrected} = p_{e, meas} * f * g)$

9 CLAS Collaboration Meeting

Taya Chetry

Signal and Background

10 CLAS Collaboration Meeting

Taya Chetry

- 500M events generated using Pythia Generator for each target (Fe, C, Pb and D₂).
- Accepted and generated simulated events binned:

Bin,
$$k = (W, \nu, \theta^*_{\pi^-}, \phi^*_{\pi^-}, p_\Lambda, \Phi_{e'\Lambda}, z)$$

* represents rest frame of Λ .

- -- 1

Variable	Range	# of Bins	Bin width	Φ _{e'۸} [deg]
W [GeV]	2.0 – 2.8	3	variable	0.012
ν	2.25 – 4.25	4	0.5	
$\theta_{\pi^{-}}^{*}$ [deg]	0.0 - 180.0	3	60.0	
$\phi_{\pi^{+}}$ [deg]	0.0 – 360.0	3	120.0	
$\phi_{ m e'\wedge}$ [deg]	0.0 – 360.0	3	120.0	
p _^ [GeV/c]	0.2 – 3.5	5	0.66	
Z	0.28 – 0.9	9	variable	~0 50 100 150 200 250 300 35 Ф _{е·л} [deg]

Total Bins = 14580

Effic

ciency:
$$eff_k = \frac{N_{acc}(W,\nu,\theta^*_{\pi^-},\phi^*_{\pi^-},p_\Lambda,\Phi_{e'\Lambda},z)}{N_{gen}(W,\nu,\theta^*_{\pi^-},\phi^*_{\pi^-},p_\Lambda,\Phi_{e'\Lambda},z)}$$

$$\Delta eff_k = \sqrt{\frac{eff_k(1 - eff_k)}{N_{gen}(W, \nu, \theta^*_{\pi^-}, \phi^*_{\pi^-}, p_\Lambda, \Phi_{e'\Lambda}, z)}}$$

* represents rest frame of Λ .

Weights, w = 1/eff, are selected to reduce spikes in the corrected distributions.

• Three cases: No correction, Correction applied (no weight cut) and Corrections applied (with weight cut: 0 < w < 5000; $0.04 < \Delta w/w < 0.4$)

Multiplicity Ratio

Multiplicity Ratio: Λ^0

14 CLAS Collaboration Meeting

Taya Chetry

Multiplicity Ratio

Preliminary

15 CLAS Collaboration Meeting

Taya Chetry

Transverse Momentum Broadening (Acceptance corrected with weight cuts)

16 CLAS Collaboration Meeting

Taya Chetry

Transverse Momentum Broadening (A-Dependence)

17 CLAS Collaboration Meeting

Taya Chetry

Summary and Outlook

- Kinematic corrections: extracted and applied.
- Acceptance corrections:
 - Combinatoric background with corrections are being produced.
 - Optimization of binning and weight cuts: Iterative progress.
- Preliminary results for Multiplicity ratio and Transerse Momentum Broadening are presented.
- Next steps would include:
 - Systematic studies.
 - Radiative corrections (Software courtesy: Ahmed El Alaoui)
 - CLAS Analysis note.
 - Outlook: Study other dependencies of R_{Λ} on Q^2 , P_T^2 (Cronin effect).

Thank you for your attention!

Extras

20 CLAS Collaboration Meeting

Taya Chetry

21 CLAS Collaboration Meeting

Taya Chetry

Feynman x, x_F

• Feynman x expressions:

$$\begin{array}{l} \text{Raphael} \\ x_{F} = 2 \frac{zM_{p}v^{2} - zQ^{2}v - (M_{p} + v)P.q}{\sqrt{v^{2} + Q^{2}}(W^{2} - M_{h}^{2})} \end{array} \\ \text{Hayk} \\ x_{F} = 2 \frac{(v + M_{p})\sqrt{p^{2} - p_{T}^{2}} - zv\sqrt{Q^{2} + v^{2}}}{\sqrt{(W^{2} - M_{h}^{2})^{2} - 4M_{h}^{2}W^{2}}} \end{array} \\ \begin{array}{l} \text{Ahmed} \\ x_{F} = \frac{|\vec{p}_{||}|}{|\vec{q}|} \\ \text{Expressed in the} \\ \gamma^{*}\text{N CM frame} \end{array}$$

Modified expression (Hayk's)
$$x_F = 2 \frac{(\nu + M_p)\sqrt{p^2 - p_T^2} - z\nu\sqrt{Q^2 + \nu^2}}{\sqrt{(W^2 - M_K^2 - M_\Lambda^2)^2 - 4M_\Lambda^2 W^2}}$$

Plot courtesy: Ahmed

- Distributions when corrections are applied
 - We compare here three cases: No correction, Correction applied (no weight cut) and Corrections applied (with weight cut: 0 < w < 5000; $0.08 < \Delta w/w < 0.4$)
 - The corrections/cuts are preliminary. More events are being generated.

Plots: z vs x_F (Fe, C, Pb, D_{g})

Taya Chetry

Taya Chetry

Taya Chetry