

CLAS12 Reconstruction Status

V.Ziegler

CLAS12 Collaboration meeting

March 24, 2020

Reconstruction Development Highlights since DNP Cooking

Central Tracking

- Addressing the review recommendations (fixes & geometry package)
- BMT hit multiplicity cut, use beam spot in fit, updated trajectory for CND & CTOF, track status word output

Forward Tracking

- New tracking using Doca measurements, improved seeding and segment finding
- Dropped un-used trajectory surfaces to reduce file size ~40% smaller size for REC:: Traj bank, 15-20% for DST; trajectory pathlength fix.
- Time offset correction to shift TDC spectra allowing coincidence of the ALERT peak position in data and MC (for background merging) [Background merger package updated to merge MC with data]
- Chi2 calculation fix
- Updated beta cuts for TBT hit selector
- Removed failed tracks with diverging parameters from output list written to bank
- Rejection of tracks with unphysical production vertex
- ECAL
 - PCAL projection yielding non-centered residuals resolved
- CND
 - Bug fix in pathlength calculation and interlayer unit
- RICH
 - Ray tracing resolution matching, fixes in par. reading & bank variables ourput (Marco Contalbrigo, INFN)

- FT
- Bug fix in overlapping clusters. Thresholds from ccdb. _
- Improvements in hodoscope/calorimeter matching
- TOF
 - Clustering algorithm updated to allow for CTOF/CND veto
 - − TOF: new TW correction → better Vtx time resolution
 - CTOF: Use trajectory information for track intersection and path length; timing correction bug fix
- - Geometry development (Viktoriya Sergeyeva, Orsay)
- BAND
 - Updated reconstruction scheme (Florian Hauenstein, ODU)
- RTPC
 - Reconstruction of tracks in BoNUS (David Payette, ODU)
- FVT
 - Reconstruction service available (requires alignment in data).
- EB Updates
 - Vertex-corrected start time, delayed helicity correction improvement
 - Get charged tracks beta from non-TOF outer detectors if TOF info. unavailable
 - Bank updates: REC::Scintillator.dedx and REC::Track.status _
 - Switching to trajectory surfaces from POCA, consistency in using pathlength and _ definitions (layer>=1, chi2pid initialized to -9999 instead of -99)
 - 2 BAND info in EB (tested for RGB)

- In MC, more identified tracks at low angles; identified e-~same
- New tag yields higher number of tracks, and slightly more identified tracks

Harut Avakian

Current Release Improvements: DC

• Tracking improvements well visible in elastic peak resolution (run 5990, 6.5 GeV)

10.6 GeV 6.5.3 kinematics

10.6 GeV 6.5.3 performance

10.6 GeV elastic

F-.X. Girod (Uconn)

- Improved ω peak yield
- e π^+ missing neutron mass improved resolution

• Elastics per sector, proton in CVT

F-.X. Girod (Uconn)

• Elastics per sector, proton in FD

p(e,e')X S1

 μ = 912.8 \pm 11.8 MeV

 σ = 107.3 ± 11.6 MeV

 μ = 968.8 ± 11.4 MeV

σ = 121.8 ± 11.4 MeV

50

40

30

F-.X. Girod (Uconn)

Current Release Improvements: FTOF

Improved resolution due to new TW correction

Software release for RG-A cooking

Fixes: DC

 Fix to Chi2 calculation: now Chi2 in simulations is. Consistent with NDF

Fixes: CTOF

• Fixed bug in one of timing correction

FVT Tracking Developement

- FMT reconstruction
 - Geometry for planes and strips.
 Geometry constants & material budget read from ccdb.
 - Updated to rgf_spring2020 geometry (reco. & simulation (Maxime)).
 - Hit reconstruction
 - Clustering (clusters used in fit)
 - Cross reconstruction for displaying in CED
 - Stand-alone service → run after TB tracking to refit the track using FMT clusters

MC Results

Updated BAND Reconstruction Scheme (Florian Hauenstein, ODU)

Summary Reconstruction Update (Florian Hauenstein, ODU

- Updated selection criteria for good hits, use of CCDB values
- Updated calibration algorithm i.e. ADC amplitude for time walk
- Changes to BAND::hits bank
 - "status" of BAND::hits as selection criterion for EB
 - Pointers to lower-level banks
 - Updated naming schemes
- New bank BAND::laser for laser hits only
- New bank BAND::rawhits for single PMT hits (before matching to bars), includes veto

RTPC Reconstruction (David Payette, ODU)

Tools: Background Merging: DC

- Package in common tools to merge decoded hits (ADC&TDC) coming from 2 hipo files. Previously used to
 merge low and high lumi. data samples → extend to merge MC and data requires readjusting of the TDC
 spectra in MC.
- Obtain timing shifts to be applied to simulation by comparing "peak" position between simulation and data (Raffaella deVita, INFN)

- Using single "T0" offset for DC, average ADC&TDC shift for FTOF

• Shifts "undone" in reconstruction (starting from 6b.5.2)

Validations: Signal MC + Random Trigger Data

Raffaella deVita, INFN

EB particles

- 10% fewer electrons
- •10% fewer negative
- •FD hadrons
- •15% fewer positives
- •FD hadrons

Validations: 2 nA (run 5418) + Random Trigger Data

Raffaella deVita, INFN

EB particles

- •10% fewer electrons
- •10% fewer negative
- •FD hadrons
- 15% fewer positives
- •FD hadrons

CED Updates: Basic RTPC 2D Display (Dave Heddle, CNU)

CED Updates: AI Display

Current Status & Ongoing Tasks

Current release validated for data processing

- COATJAVA release 6.5.3
- Compatible with GEMC 4.3.2

Ongoing tasks

- CVT tracking (next talks)
- TOF clustering validation
- CND/CTOF veto
- BAND information used in EB (tested in dedicated branch)
- Covariance matrix
 - Transformation of covariance matrix in lab frame
- Background merging
- Packages restructuring for AI
 - C.f. Gagik's talk
- Geometry package restructuring
- Good track selection

BACK-UP SLIDES

DC TRACKING: Reconstruction Improvements

- Reinitialize the track from last Hit-Based state vector in KF → avoid frame transformation.
- Use of custom 5-d matrix used in KF: faster matrix operation compared to JAMA (matrix library used in development). [Implemented by Gagik in jnp package].
- More efficient track segment overlap finder.
- More efficient code to recompose clusters at Time-Based level using Hit-Based H.O.T.s.
- Al assisted tracking: potentially ~ 5x faster Hit-Based tracking (see my next talk).
- Outer detector matching using ECAL if no TOF hit matches (see Nathan's talk).

 — Preliminary studies: yields about 8% more tracks in MC → Testing with data ongoing.

Tracking in CLAS12 DC

- Covariance matrix estimated at each DC wire plane in TCS
- Reported at last measurement site used in the fit
- Propagated w/o filtering to reconstructed z-vertex

- <u>site</u>: DC layer plane where a fired (k = 1...36);
 - in tilted coordinate system, planes are perpendicular to z, so measurement sites are equidistant
- state: 5-parameter track representation

$$ilde{x}(z) = egin{pmatrix} x \ y \ t_x \ t_y \ q \end{pmatrix}, \quad egin{pmatrix} t_x = p_x/p_z \ , \ t_y = p_y/p_z \ q = Q_e/\left|ec{p}
ight|$$

At each step the covariance matrix had to be propagated along with the state vector, with process noise added after each rotation. RungeKutta-4 method to solve the equations of motion and derivatives numerically requires over factor 10 fewer steps → faster

$$C_{k}^{k-1} = F_{k-1}C_{k-1}F_{k-1}^{T} + Q_{k-1},$$

Solve Jacobian (F) using **RK4**

$$\begin{array}{lll} d/dz(\partial x/\partial t_{x0}) &=& \partial t_x/\partial t_{x0}, \\ d/dz(\partial y/\partial t_{x0}) &=& \partial t_y/\partial t_{x0}, \\ d/dz(\partial t_x/\partial t_{x0}) &=& q_0 \cdot \upsilon \cdot \left[(\partial A_x/\partial t_x)(\partial t_x/\partial t_{x0}) + (\partial A_x/\partial t_y)(\partial t_y/\partial t_{x0})\right], \\ d/dz(\partial t_y/\partial t_{x0}) &=& q_0 \cdot \upsilon \cdot \left[(\partial A_y/\partial t_x)(\partial t_x/\partial t_{x0}) + (\partial A_y/\partial t_y)(\partial t_y/\partial t_{x0})\right], \\ \partial q/\partial t_{x0} &=& 0, \\ \partial A_x/\partial t_x &= t_x \cdot A_x/(1 + t_x^2 + t_y^2) + (1 + t_x^2 + t_y^2)^{\frac{1}{2}} \cdot (t_y \cdot B_x - 2 \cdot t_x \cdot B_y), \\ \partial A_x/\partial t_y &= t_y \cdot A_x/(1 + t_x^2 + t_y^2) + (1 + t_x^2 + t_y^2)^{\frac{1}{2}} \cdot (t_x \cdot B_x + B_z), \\ \partial A_y/\partial t_x &= t_x \cdot A_y/(1 + t_x^2 + t_y^2) + (1 + t_x^2 + t_y^2)^{\frac{1}{2}} \cdot (-t_y \cdot B_y - B_z), \\ \partial A_y/\partial t_y &= t_y \cdot A_y/(1 + t_x^2 + t_y^2) + (1 + t_x^2 + t_y^2)^{\frac{1}{2}} \cdot (-t_x \cdot B_y + 2 \cdot t_y \cdot B_x) . \\ \end{array}$$

٠

Steps to get the covariance matrix in the lab frame in terms of EB track representation

- Jacobian transformations for the transformation from one representation & frame to the other (x, y, tx, ty, z_fixed in TCS --> x, y, px, py, pz, z_rotated)
- Done by Luca and Mylene → needs to be implemented in code
- David: parametrization of covariance matrix from MC (ongoing)

FVT Tracking Development

- Find FMT Matches within ~1 cm of DC track trajectory (resolution at FMT face from MC ~1 cm → 20 strips)
- Use FMT centroid positions as KF Measurements
- Use same KF formalism as for DC except the coordinate system is now the lab frame. Same principle of fixed z measurement planes (FMT disks).

y_loc = y*cos(Alpha[layer-1])- x*sin(.FVT_Alpha[layer-1]);

FMT in ced

New cross definition

- Cluster matched to track using trajectory bank (detector 8)
- Requires 1 cm matching **doca** of trajectory point to strip (needs further

c::Crosses					000						Timebased trkg:: trajectory				
n	x	y	ux		1	d	detector		layer	x		У	z		
_	2.71218	-4.65996	0.0	1		1	15		1	18.5769	5 -3	24.27033	172.31	050	
	2.78165	-4.83967	0.0	2		1	100		2	0.17980) -	0.38287	2.501	32	
_	2.94034	-5.05592	0.0	3		1	100		1	-0.0103	6 0.02458		-5.16208E-4		
_	3.09415	-5.19660	0.0	4		1	8		1	2.71817	7 -	4.67735	30.29	550	
_	3.19930	-5.36421	0.0	5		1	8		2	2.84262	2 -	4.85152	31.48	720	
	3.31868	-5.57506	0.0	6		1	8		3	2.96774	۰ t	5.02440	32.67	529	
				7		1	8		4	3.09434	4 -	5.19715	33.86	780	
				8		1	8		5	3.22143	3 -	5.36851	35.05	588	
_				9		1	8		6	3 34966		5 53943	36.24	594	
				10		1	6		6	25.9157	6 -3	33.66324	239.74	167	
				11		1	6		12	27.1210	1 -3	35.22602	250.89	462	
				12		1	6		18	43.5445	1 -	57.51094	367.33	524	
				13		1	6		24	47.9064	9 -1	63.46887	386.95	242	
				14		1	6		30	79.1411	7 -1	05.93192	497.14	1178	
				15		1	6		36	85.3418	7 -1	14.41597	517.54	712	
				16 1 17 1 18 1		1	12		3	152.5978	89 -2	07.22987	739.70172		
						1	12		2		94 -1	67.31584	1584 644.0899		
						1	12		1	127.9683	30 -1	73.35667	658.56	042	
				19	19 1		16		1	118.71018 -1		60.62393	628.05988		
				20 1		1	7		2		59 -1	82.04900	679.38239		
				21		1	7		5	140.1366	51 -1	90.09181	698.64844		
				22		1	7	7 8		145.15614 -1		96.99519 715.18512		512	
					FMTRec::Clusters										
					ID	sector	layer	size	ETot	seedE	seedStrip	centroid	centroidRe	seedRe	
				1	1	1	1	3	45.00000	30.00000	572	-5.28908	0.0	0.0	
				2	2	1	2	2	20.00000	18.00000	230	-3.65400	0.0	0.0	
				3	3	1	3	2	16.00000	9.00000	125	1.88672	0.0	0.0	
				4	4	1	4	2	18.00000	13.00000	48	5.92083	0.0	0.0	
				5	5	1	5	2	65.00000	53.00000	752	4.16406	0.0	0.0	
				6	6	1	6	3	29.00000	22.00000	634	-2.03030	0.0	0.0	
						-									

PID: CND/CTOF Veto

Adam Hobart (Orsay)

PCAL Parallax Correction

Z Tracking Planes in PCAL

- PCAL and EC reconstruction measures only transverse (x,y) cluster position.
- Cluster z position referenced to user-defined Z tracking plane.
- PCAL Z tracking plane must approximately coincide with depth of shower maximum to avoid parallax errors in theta for off-normal straight tracks (photons, neutrons).
- For EC the scintillator projective geometry compensates for parallax.

Implemented in 6c.3.4

- ECCommon.java
- TrajectorySurfaces.java
- DetectorLayer.java
 - Introduce DetectorLayer.PCAL, EC_INNER, EC_OUTER
 - Set DetectorLayer.PCAL_Z = 9
- ECFactory.java
 - · Generate scintillator volumes for all ECAL layers

Expected Impact

- PCAL-EC cluster matching
- Pathlength for timing calibration
- Neutral meson 4-vector from 2Y decay kinematics
- DC tracking residuals for cluster PID and alignment

Cole Smith (UVA)

DC TRACKING: Time To Distance Calculation

Tools: Background Merging: FTOF

- separate shifts for TDC and ADC; need global offset for each layer.
- GEMC permits only single shift \rightarrow for now average TDC&ADC

FTOF offsets (average between TDC and ADC offsets) written to time_offsets table (p2p constants)

•Shifts "undone" in reconstruction (starting from 6b.5.2)

