Run Group B status update

- RGB experiments
- Overview of the 3 run periods
- Status of calibrations and data processing
- Analysis updates
- Jeopardy preparation

Silvia Niccolai, IJCLab CLAS Collaboration meeting, 3/25/2020

Laboratoire de Physique des 2 Infinis

CLAS12 Run Group B: experiments

	_ · _ · _ J - · J	
Study of parton distributions in K SIDIS	W. Armstrong	A- 56
Boer-Mulders asymmetry in K SIDIS	M. Contalbrigo	A- 56
Deeply virtual Compton scattering on the neutron	S. Niccolai	A (HI) 90
Collinear nucleon structure at twist-3 in dihadron SIDIS	M. Mirazita	RG
In medium structure functions, SRC, and the EMC effect	O. Hen	RG
Study of J/ψ photoproduction off the deuteron	Y. Ilieva	RG
Quasi-real photoproduction on deuterium	F. Hauenstein	RG (*)
	Study of parton distributions in K SIDIS Boer-Mulders asymmetry in K SIDIS Deeply virtual Compton scattering on the neutron Collinear nucleon structure at twist-3 in dihadron SIDIS In medium structure functions, SRC, and the EMC effect Study of J/ψ photoproduction off the deuteron Quasi-real photoproduction on deuterium	Study of parton distributions in K SIDISW. ArmstrongBoer-Mulders asymmetry in K SIDISM. ContalbrigoDeeply virtual Compton scattering on the neutronS. NiccolaiCollinear nucleon structure at twist-3 in dihadron SIDISM. MirazitaIn medium structure functions, SRC, and the EMC effectO. HenStudy of J/ψ photoproduction off the deuteronY. IlievaQuasi-real photoproduction on deuteriumF. Hauenstein

Common features to all experiments of RG-B:

- Liquid deuterium target
- Beam energy: « 11 » GeV

<u>Deuteron</u> luminosity in nDVCS proposal: 10³⁵ cm²/s Total expected charge for 90 PAC days: 510 mC

(*) Joined RGB from fall run onwards

Experimental setup (common to the 3 run periods)

Run Group B spring 2019 run

Running conditions:

- **10.6 10.2** GeV beam energy
- Torus *inbending*
- Production current: $35 \text{ nA} \rightarrow 50 \text{ nA}$
- Event-weighed average current: 47.9 nA
- DAQ rate: ~14 kHz

Outcome:

- Original schedule: 1/30 3/10
- Final accelerator schedule: 2/8 3/17
- Actual days ran: 2/8 3/25 (thanks to RG-A's kindness!)
- 21.7 PAC days according to ABUs (48.4%)
- 237 good production runs
- ~9.7 B triggers at 10.6 GeV, ~11.7 B at 10.2 GeV

Choose... Physics Time Accounting Hall B Beam from February 8 - March 25, 2019 (07:00 - 07:00)

Run Group B fall 2019 run

Run Group B winter 2020 run

Running conditions:

- **10.4** GeV beam energy
- Torus *inbending*
- Production current: $40 \rightarrow 50$ nA
- Event-weighed average current: 45.1 nA
- DAQ rate: ~19 kHz

Outcome:

- Accelerator schedule: 1/10 1/29
- Actual days ran: 1/7 1/29
- 10.5 PAC days according to ABUs (43.6%)
- 181 good production runs
- 12.9 B triggers at 10.4 GeV

🔵 beam charge taken during shift 🛛 🗢 gated charge 🛛 🔶 ungated charge

Run Group B overall statistics

43.3 B triggers collected: 10.6 GeV (9.7 B), 10.2 GeV (11.7 B), 10.4 GeV (21.9 B – 9 B outbending)

38.9 total PAC days according to ABUs \rightarrow **43.2% of the approved 90 PAC days**

Accumulated charge: 154.6 mC ungated (Andrey's tool), 30.3% of the proposed 510 mC

Beam current necessary to reach L= 10^{35} on a 5-cm-long deuterium target $\rightarrow 65.5$ nA Average beam current for RG-B: ~44.96 nA $30.3 \% \times 65.5/44.96 = 44.1\% \rightarrow \text{numbers are ~consistent}$

Special runs (all run periods):

- 27 low-luminosity runs
- 9 empty target/high-current runs
- Several random trigger runs
- 3 zero-field alignment runs

Calibrations and data processing

Spring19 data:

- A pass0 was done All steps until timelines « middle » runs to calibrate established
- BUT: FTOF calibration algorithm change: first run (6164) recalibrated
- RF recalibrated for all runs
- First run recalibrated for all subsystems
- Monitoring pass between 6150 and 6223
- FTOF and RF calib for middle runs (6223, 6228, 6351, 6420, 6546).
- Ongoing: calibration of middle runs for other detectors
- To do: another pass of RF calib for all runs, new monitoring pass, timelines, and if all is good production cooking! ©

Fall19 and Winter20 data:

- Cooking of first runs (11093 11328), calibration done for FTOF
- RF calibrated for all runs
- First runs calibrated for FTOF, CTOF, FTCal, HTCC, CND
- Monitoring pass and analysis of timelines done for fall data
- Established runs to calibrate for fall data
- Ongoing: timelines for winter
- To do: establish other runs to calibrate for winter, calibrations, new monitoring pass, timelines, and if all is good production coking! ©

Plan: complete calibrations for *spring data* by the end of this week and start the review process for first part of pass-1 cooking (spring data only)

Data quality: monitoring

Examples of timelines for first set of spring runs

Examples of timelines for first set of spring runs

Analysis updates: n- and p-DVCS

- ➤ A first set of Pass0 calibrations+cooking was done in summer 2019
- Preliminary results for nDVCS shown at DNP'19 (7% of spring statistics)
- PID + preliminary exclusivity cuts based on MC

Ongoing work:

- π^0 background estimation
- Implementation of CND-CTOF veto for charged particles in COATJAVA
- Refinement of CD neutron PID in the EB

Coherent Deuteron DVCS

J. Dickovick,

A.

B.

Biselli

- 35 runs pass0v16 (DNP cooking)
- $e + D \rightarrow e + D + \gamma$
- Exclusivity cuts for events with y in FT:
 - $E_{X}(ed \rightarrow edyX) < 2 \text{ GeV}$ 0
 - $p_{t} < 0.5 \text{ GeV/c}$ 0
 - 2-dimensional cut on $\theta_{y,x}$ vs 0 $M_{x}^{2}(ed \rightarrow edX)$

Similar cuts for FD

Measurement of the Neutron Magnetic Form Factor G_M^n at High Q^2 Using the Ratio Method on Deuteron

Work by L.Baashen (FIU), B.A. Raue (FIU) and G. Gilfoyle (Richmond)

Motivation : Fundamental quantity related to the magnetization in the nucleon.

Method : Extract G_M^n using **ratio technique:** $R = \frac{d(e,e'n)p}{d(e,e'p)n}$

Required : Precise determination of the **neutron detection efficiency** (NDE) using $p(e, e'\pi^+n)$ reaction on hydrogen target in Run Group A.

Analysis Status:

- **Production data:** Developed and tested codes to extract *R* on early DSTs and simulation.
- **NDE(1):** Optimizing event selection and extracting neutrons from higher mass background.
- NDE(2): (1) Swim expected neutrons from the track vertex to intersect ECAL and (2) then select neutral ECAL hit closest to the expected neutron point-of-intersection. (3) Apply direction cosine cut. See plots to the right.

Tagged DIS for bound proton structure modification

Di-hadron SIDIS

\succ e N \rightarrow e $\pi \pi X$ final state with 3 charge combinations

- All particles in the FD
- π^0 detected via the $\gamma\gamma$ decay
- DIS cuts: $Q^2 > 1 \text{ GeV}^2$ $W > 2 \text{ GeV}^2$ y < 0.8
- Inclusive cuts: $MM > 1.15 \text{ GeV} \quad z_{\pi\pi} < 0.95$

\succ Comparison of rg-A and rg-B data \rightarrow flavor separation

• analysis of DNP data to set up analysis procedures and cuts

O. Soto (LNF)

Two-pion invariant mass

Exclusive ρ ⁻ **on the neutron**

Normalized difference between deuteron and proton data

To be corrected by π^0 background, different resolutions, Fermi motion, etc.

Preparation for jeopardy PAC

« New developments since PAC approval »

- Creation of RGB
- New RG proposals joining RGB
- Hardware: new detectors (CLAS12! + FT, CND, RICH, BAND)
- The **running** of the « first half » of RGB:
 - ✓ Overall performances: ABUs, luminosity, number of triggers
 - ✓ Beam energy differences and impact on data →→
 - ✓ Conditions (inbending, outbending)
- **Preliminary results** (with a subset of data)
 - ✓ nDVCS BSA
 - $\checkmark G_M^n$
 - ✓ SIDIS? Di-hadron?
 - ✓ Tagged DIS with BAND
 - ✓ New « unplanned » results (pDVCS, dDVCS,...)

Beam-time request

• How much beam time will we ask for?

nDVCS was approved for 90 days. Should we use **ABUs** or **charge collected vs expected at 10^35**? Days left according to ABUs ~ **51.1**

Days left according to expected charge ~ 61.1

- Do we account for the beam energy differences in the request?
- Do we include extra days due to outbending/inbending running?

Study done for nDVCS:

Strong variations (up to a factor of 2) of BH+nDVCS CS at fixed kinematics for the 3 different beam energies → definition of central kinematics to combine BSA bin-by-bin is challenging and model dependent

Conclusions

- The first « half » of RG-B running ended on January 30
- ~38.9 PAC days collected out of 90
- Three different beam energies for the 3 periods
- Calibrations almost complete for the spring dataset
- Calibrations well advanced for fall and winter datasets
- We would like to start the review for pass-1 (spring data)
- Physics analyses in good progress: n/p/d-DVCS, Di-hadron SIDIS, Gⁿ_M, Tagged-DIS
- Preparation for jeopardy PAC underway

All this is possible thanks to our great RG-B team Special thanks to: Chef: Zhiwen Zhao Monitoring: Yordanka Ilieva Timelines: Sangbaek Lee + all detector experts and calibrators! **Back-up slides**

Measurement of BSA for nDVCS-BH with 3 different beam energies

RG-B ran at 3 different beam energies: 10.6 GeV, 10.2 GeV, 10.4 GeV Can we combine (and how?) the BSA extracted from the 3 sets?

Ratios of BSA: 10.2/10.4, 10.2/10.6

Ratios of BSA: 10.2/10.4, 10.2/10.6

Ratios of BSA: 10.2/10.4, 10.2/10.6

Ratios of cross sections: 10.2/10.4, 10.2/10.6

Ratios of cross sections: 10.2/10.4, 10.2/10.6

Ratios of cross sections: 10.2/10.4, 10.2/10.6

Conclusions

- The BSA is less sensitive than the absolute cross section to the variations of beam energy
- Depending on the kinematics, the BSA varies from a % to 20-30% (especially for 10.2-10.6)
- Strong variations of the CS impact the definition of the central kinematics of each bin
- The edges in ϕ are the most affected (that's where BH dominates), but at the highest Q^2 the effect is over all ϕ
- It will need to be restudied with a more realistic grid of bins
- Definition of central kinematics of the bins quite crucial and not trivial