

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Physics Motivation

- The 3D nucleon structure in momentum space can be described by TMDs
- A way to acess these properties is the semi inclusive deep inelastic scattering

Physics Motivation

- ➔ A convolution of 4 TMDs and 4 fragmentation functions
- → Each term contains a twist 3 component
- ➔ The results can be used in a global fit to constrain the TMDs and FF

Additional constraints: i.e. from unpolarized structure functions

$$F_{UU}^{\cos\phi_{h}} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{p}_{T}}{M_{h}} \left(xhH_{1}^{\perp} + \frac{M_{h}}{M}f_{1}\frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{T}}{M} \left(xf^{\perp}D_{1} + \frac{M_{h}}{M}h_{1}^{\perp}\frac{\tilde{H}}{z} \right) \right]$$

$$F_{UU}^{\cos 2\phi_{h}} = \mathcal{C} \left[-\frac{2(\hat{\mathbf{h}} \cdot \mathbf{p}_{T})(\hat{\mathbf{h}} \cdot \mathbf{k}_{T}) - \mathbf{p}_{T} \cdot \mathbf{k}_{T}}{MM_{h}} h_{1}^{\perp}H_{1}^{\perp} \right].$$
+ di-hadron SIDIS: $F_{LU}^{\sin\phi_{R}} = -x \frac{|\vec{R}|\sin\theta}{Q} \left[\frac{M}{M_{\pi\pi}} xe^{q}(x)H_{1}^{\triangleleft q}(z,\cos\theta,M_{\pi\pi}) + \frac{1}{z}f_{1}^{q}(x)\tilde{G}(z,\cos\theta,M_{\pi\pi}) \right]$
Bacchetta Badici PBD69 074026 (2004) Aurore Courtov arXiv:1405 7659

+ constraints from other experiments (SIDIS + Drell-Yan)

Physics Motivation

Goal of this study: Extract $F_{LU}^{\sin\phi}$ from single π^+ beam spin asymmetries

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$

$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos(2\phi)}\cos(2\phi)}$$

$$A_{LU}^{\sin\phi} = \sqrt{2\varepsilon(1-\varepsilon)} \frac{F_{LU}^{\sin\phi}}{F_{UU}}$$

Past: Measurements have been performed with CLAS, HERMES and COMPASS
 Advantages of CLAS12
 Significantly higher statistics
 Extended kinematic coverage (Q², P_T)
 Goal for the first CLAS12 publication: A multidimensional study in Q², x_B, z and P_T

Experimental Setup and available dataset

RG-A data from fall 2018:

→ 10.6 GeV electron beam → 85 % average polarization → liquid H₂ target

Plots shown in this presentation: ~ 3 % of the approved RG-A beam time (DNP 2019) inbending torus field

<u>Data for first publication</u>: complete fall 2018 inbending dataset (~ 3 x more) outbending data can be used to extend the kinematic region

Electron ID

PCAL

/ /cm

400

300

200

100

٥

-100

-200

-300

-400

GeV

- **1.** PCAL fiducial cuts
- 2. DC fiducial cuts for the 3 regions
- 3. PCAL energy deposition > 0.07 GeV eventbuilder: > 0.06 GeV
- 4. Calorimeter sampling fraction: 3 sigma region
- **5.** p_e > 2.0 GeV
- **6.** z-vertex cut [-11, +9] \rightarrow 2 % level of the maximum

70000

60000

50000

40000

30000

20000

DC region 1

Hadron ID

1. DC fiducial cuts for the 3 regions

- 2. Final selection based on TOF
 - → Maximum likelyhood PID from eventbuilder with $|\chi^2_{PID}| < 2.0$

03/25/2020

$$P_{min}(e^{-}) = 2.0 \text{ GeV} (y < 0.8)$$
 $P_{min}(\pi^{+}) = 1.25 \text{ GeV}$

<u>DIS cut</u>: $Q^2 > 1 \text{ GeV}^2$ W > 2 GeV

Additionally: Cut on the final state hadron momentum fraction z

→ z > 0.3 removes the "target fragmentation region" → z < 0.7 removes contamination by pions from exclusive channels

Kinematic coverage for π^+

CLAS collaboration meeting, Newport News, VA

Beam spin asymmetry

$$BSA_i = \frac{1}{P_e} \cdot \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-} \qquad P_e = 85 \% : \text{ average } e^- \text{ beam}$$
polarisation

A multidimensional study

Step 1: A two dimensional binning

0.3 < z < 0.7

 $0.0 \text{ GeV} < P_{T} < 1.4 \text{ GeV}$

Π'

 $1.0 \text{ GeV}^2 < Q^2 < 12 \text{ GeV}^2$

A multidimensional study

A multidimensional study

Conclusion on P_T :

- ➔ Increase up to high P_T if Q² and x_B are small
- →Flat behaviour at large P_T for intermediate Q₂ and x_B
- ➔ Slight decrease at large P_T for large Q₂ and x_B
- ➔ Slope and magnitude influenced by Q² and x_B

Kinematic coverage: outbending vs inbending

Possible sources of systematic uncertainty:

- \rightarrow Uncertainty of the beam polarisation
- → Fiducial cuts and particle ID refinements (strictness of the PID / contamination in the pion sample)
- \rightarrow Acceptance Effects
- \rightarrow Extraction method and higher order moments
- \rightarrow Detector inefficiencies / sector dependence
- → Radiative effects
- \rightarrow Binning / resolution effects

Systematics: Beam Polarisation

Available measurements:

- Change of the beam polarisation has to be considered.

~3% systematic uncertainty from the measurement.

Hall-B Möller measurements

Systemtics: Uncertainty from the PID

 \rightarrow Small effect (requires final statistics for precise results)

Systematics: Dependence of the result on the data quality

Comparison of different extraction methods

Method 1: χ^2 fit of the BSA calculated for 12 ϕ bins

a) 1 moment only: $BSA = A_{LU}^{\sin \phi} \cdot \sin(\phi)$

b) all 3 moments:
$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi} \sin\phi}{1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos(2\phi)} \cos(2\phi)}$$

+ fast + result can be visualized - using all 3 moments not reliable for low stat.

Method 2: Statsitical extraction (unbinned in ϕ)

a) 1 moment only:
$$P = -\prod_{i=1}^{N} (1 + h \cdot P_e \cdot gauss(A_{LU}^{\sin(\phi)}, \sigma) \cdot \sin(\phi))$$

b) all 3 moments:
$$P = -\prod_{i=1}^{N} \left(1 + h \cdot P_e \cdot \frac{gauss(A_{LU}^{\sin(\phi)}, \sigma_1) \cdot \sin(\phi)}{1 + gauss(A_{UU}^{\cos(\phi)}, \sigma_2) \cdot \cos(\phi) + gauss(A_{UU}^{\cos(2\phi)}, \sigma_3) \cdot \cos(2\phi)} \right)$$

➔ Minimize P

+ partly a reduced error
+ more reliable for low stat.
- slow
- no direct visualisation of the quality
+ does not depend on the phi binning
+ less sensitive to possible holes in the phi coverage

π^{+} - Comparison of all 4 extraction variants

Systematics: Comparison of the sector dependence (π⁺ sector)

CLAS collaboration meeting, Newport News, VA

Systematics: Acceptance effects

 $\pi^{\scriptscriptstyle +} \ \varphi$ acceptance, based on SIDIS MC

- Smooth acceptance curves
- If they exist, acceptance effects due to the finite bin size only around $\phi = 0$

Systematics: acceptance effects

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06-0.08

> 0.2 0.3

> > rec

-0.08

0.2 0.3 0.4 0.5

0.08H

0.06

0.04

0.02

-0.02

-0.04

-0.06

 $\mathbf{A}_{LU}^{sin\Phi}$

gen

0.4 0.5

0.6 0.7

 $A_{LU}^{sin(\phi)}$ versus z

ł Ť.

> 0.6 0.7

 $\mathbf{A}_{\mathrm{LU}}^{\mathrm{sin}\Phi}$

MC for π^+ :

genearated (with experimental BSA)

fit to exp. result: $A_{III}^{sin\phi} = -0.00285$ + 0.05787 * z_{gen}

 $\sim 60 - 80$ million events

reconstructed:

- \rightarrow no variation within statistical uncertainty
- \rightarrow for a pricise study 500 – 1000 million MC events will be produced (CLAS DIS).

CLAS collaboration meeting, Newport News, VA

Comparison to theoretical predictions

A first theoretical model for single pion SIDIS was introduced in

- P. Schweitzer, Phys. Rev. D67, 114010 (2003) [hep-ph/0303011]
- A. V. Efremov, K. Goeke, and P. Schweitzer, Phys. Rev. D73, 094025 (2006) [hep-ph/0603054]

➔ Recent global fits show that the other terms can not be neglected

Simplifying assumption:

- only contribution from $\,e(x)\otimes H_1^\perp$

$$\begin{split} F_{LU}^{\sin\phi} &= \frac{2M}{Q} \mathcal{C} \left(-\frac{\mathbf{\hat{h}} \cdot \mathbf{k_T}}{M_h} \left(x \mathbf{e} \mathbf{H}_1^{\perp} + \frac{M_h}{M} \mathbf{f}_1 \frac{\tilde{\mathbf{G}}^{\perp}}{z} \right) \\ &+ \frac{\mathbf{\hat{h}} \cdot \mathbf{p_T}}{M} \left(x \mathbf{g}^{\perp} \mathbf{D}_1 + \frac{M_h}{M} \mathbf{h}_1^{\perp} \frac{\tilde{E}}{z} \right) \right) \end{split}$$

- sign is correctly reproduced
- magnitude at large x is too low
 - ➔ Some of the TMDs and FF got better constrained

Comparison to theoretical predictions

Newer predictions (2014):

On the beam spin asymmetries of electroproduction of charged hadrons off the nucleon targets

Wenjuan Mao, Zhun Lu^a

Department of Physics, Southeast University, Nanjing 211189, China

Fig. 5 Predictions on the beam SSAs for charged pions (*left panel*), charged kaons (*central panel*), and proton/antiprotons (*right panel*) in SIDIS at JLab with a 12 GeV electron beam scattered off a proton target. The upper panels show the results calculated from the TMD DFs

in Set 1 and the lower panels show the results calculated from the TMD DFs in Set 2. The *dashed*, *dotted* and *solid* curves show the asymmetries from the eH_1^{\perp} term, the $g^{\perp}D_1$ term and the sum of the two terms, respectively

- ➔ Updated calculations, including all known terms and the most recent TMDs and FF are in progress by P. Schweitzer et al.
- ➔ A multidimensional binning will enable a much better comparability with the calculations

Timelines and path towards a first publication

Conclusion and Outlook

- All analysis methods have been developed and tested on the DNP data
- Adjustment of cuts etc. will start as soon as the first bunch of the final data is avaiable (next week)
- MC production will be done in parallel on OSG (common SIDIS MC)
- The goal for the first publication is to show a multidimensional binning for $\pi^{\scriptscriptstyle +}$
 - → A multidimensional binning will be available for the first time and is very importnant for global TMD fits.
- The analysis note and the paper are under preparation

