
CLAS12 Computing Environment,
Resources, and Data Processing @ JLab

N. Baltzell

March 24, 2020

CLAS Collaboration Meeting

1

General Reminders

• Pay attention to emails from jlab-scicomp-briefs@jlab.org

• everyone with a JLab computing account *should* receive them

• planned/unplanned outages, upgrades, system changes, etc

• Learn and use scicomp's documentation and monitoring web pages
for batch jobs, disk quotas, tape access

• http://scicomp.jlab.org

• You can also monitor non-scicomp quotas (e.g. your /home
directory or /group/clas...) at https://cc.jlab.org, after logging in via
the link at the top-right

• Announcements regarding general Hall-B computing/software go to:

• clas12_software@jlab.org (12 GeV era Run Groups)

• clas_offline@jlab.org (6 GeV era Run Groups)

• hps/prad/etc@jlab.org

• Note, email address links above will take you to the archive and
sign-up page for that mailing list

https://mailman.jlab.org/mailman/listinfo/jlab-scicomp-briefs
http://scicomp.jlab.org
https://cc.jlab.org
http://www.apple.com
https://mailman.jlab.org/mailman/listinfo/clas_offline

CLAS12 Software Environment

• A shared installation of all standard clas12 software is officially maintained on the /group disk

• First source one file:

• source /group/clas12/packages/setup.csh (or setup.sh for bash)

• Then use the module command to see what's available and load them into your

environment. Note, scicomp/IT has recently been moving more towards modules too, so
you'll see non-clas12 options too (e.g. compilers, singularity).

• Documentation! https://clasweb.jlab.org/wiki/index.php/CLAS12_Software_Center#tab=FAQ

• Note the clas12 "uber" modules, which give you everything in one shot.

• clas12/pro is scheduled to be updated to new production versions (coatjava/gemc/
clas12root) later this week and will be announced in advance.

https://clasweb.jlab.org/wiki/index.php/CLAS12_Software_Center#tab=FAQ

CLAS12 Disk Storage (1)

• /work/clas12

• 150 TB, manually managed, single

fileserver
• not good for large data I/O (e.g.

access from batch jobs)
• for production data

processing, only the smallest
final outputs should go to /
work

• scicomp is working on a higher-
reliability/IO replacement for /work!

• Lustre fileservers, distributed, good for large data and I/O

• *automatically* managed based on quotas

• scicomp has been in the progress of tripling Lustre since last time

• to facilitate this we transitioned off old /volatile and let people copy data to the new one, in order to
rebuild the older filesystems and later return them to the pool

• /volatile/clas12

• 50/25 260/130 TB High/Guaranteed

• scicomp recently gave ability to easy adjust quotas

• /cache/clas12
• 600/250 TB High/Guaranteed

• Only for files staging from/to tape library, and it's write-through to tape

• we recently cleaned up the quota heirarchy (everything's now inside "hallb")

/volatile

CLAS12 Disk Storage (2)

• Monitoring

• scicomp.jlab.org

• And some additional tools we now run, to give finer-grained

info for clas12 (linked in the FAQs on our Software Wiki)

• /work/clas12 usage report, updated weekly

• http://clasweb.jlab.org/clas12offline/disk/work

• Auto-deletion queues, updated daily

• http://clasweb.jlab.org/clas12offline/disk/volatile

• http://clasweb.jlab.org/clas12offline/disk/cache

• Older clas6 run-groups

• generally not currently receiving the attention and /volatile disk

space increases that ongoing experiments are, and some
completely unused /volatile/clas quotas were repurposed

• /work/clas needs serious cleanup

• contains data over a decade old!

• difficult, since run groups are not very active and

centralized, lots of inactive accounts own files, need
run-group leaders to help

• and then potentially an increased quota

• Use an appropriate location for your data!

• e.g. clas6 data in their corresponding run-group locations, not
in clas12, and vice-versa

• This is important to have a quota system that is
manageable and appropriate for the needs

• if an older run-group needs special consideration, more space,
make estimates and let me know!

We've talked about moving clas12 to a more
organized structure:

•

• this will also enable moving towards

finer-grained quotas, e.g. per run-
group, separately from users easier, if
we want to go that route

• To help, move your user directories
inside "users", and use your real
username for the name of your
directory!

http://scicomp.jlab.org
https://clasweb.jlab.org/wiki/index.php/CLAS12_Software_Center#tab=FAQ
http://clasweb.jlab.org/clas12offline/disk/work
http://clasweb.jlab.org/clas12offline/disk/volatile
http://clasweb.jlab.org/clas12offline/disk/cache

JLab Computing Resources

• Batch and Interactive nodes

• now all centos7.7

• interactive

• ifarm1401 was removed recently

• ifarm1801/2 now supplemented by ifarm1901

• batch

• a mixture of years of purchases

• farm18XXX and farm19XXX flavors are the same as the corresponding interactive
nodes

• the oldest, least efficient, qcd nodes will be decommissioned this year

• scicomp supports more options for batch nodes than in previous years

• interactive jobs and GPUs, some nodes reserved for jupyterhub usage

• see documentation at https://scicomp.jlab.org

ifarm1901 cpus

https://scicomp.jlab.org

Batch Farm Resource Requests (1)

Remember to optimize your requests, e.g. memory/cpu/disk/time. If you’re
running jobs on the Jlab batch farm, learn to use the metrics available here:

https://scicomp.jlab.org.
Memroy request is particularly important for single-core jobs, due to the

hardware of the Jlab batch farm which *averages* around 800 MB per job slot.
There will be a demo on Friday …

Optimize your requests according to what your jobs really need!

• memory/cores
• Over-requesting can prevent the farm from running at 100%, screenshot

below is a particularly bad example. Memory is the usual culprit, but
sometimes people request multiple cores while using only use one.

• time
• Allows the scheduler to optimize backfilling, e.g. inserting shorter, lower

priority jobs opportunistically while maintaining the fairshare targets.

• disk

• Under-requesting can cause local node filesystems to max out and cause
everyone's jobs on that node to crash.

And use the right "project" for your jobs, for proper accounting and fairshare.

Batch Farm Resource Requests (2)

Batch Farm Resource Requests

4

Remember to optimize your requests, e.g. memory/cpu/disk/time. If you’re
running jobs on the Jlab batch farm, learn to use the metrics available here:

https://scicomp.jlab.org

An example after clicking on one of the underutilized nodes:

So far we’ve been occasionally checking out the farm, seeing if Hall B has jobs that need
modification, and emailing users to educate.

To investigate your jobs' actual resource usage:

• Run interactively and monitor with the usual linux utilities (e.g. top/htop/du)

• Or, for previous batch jobs, see the"Jobs"link at the top-left of https://
scicomp.jlab.org, and then the "Job Query" link in the top-middle

• For a command-line version of the same info, see slurm-status.py in our

workfow module

We've been occasionally checking out Hall B batch jobs, and emailing users on
improving their resource requests, to get the most throughput for everyone.

https://scicomp.jlab.org
https://scicomp.jlab.org

CLAS12 Data Processing (1)

fairshare

usage

• Hall B's net fairshare is ~36% of batch farm, see the "Usage"link at scicomp.jlab.org

• scicomp is now using SLURM's Tree Faishare Algorithm, with better load-

balancing between production jobs and everything else, keeping farm loaded

• We've developed tools to aid in studying our throughput by analyzing and combining

info from our jobs' log files, SWIF and SLURM database queries, checking output
locations

• This allowed really tracking progress, implementing fixes, optimizing Clara/
SLURM job configurations, memory usage, I/O logistics ... and understanding
how our empirical throughput compares to fairshare and benchmarks

http://scicomp.jlab.org
https://slurm.schedmd.com/fair_tree.html

CLAS12 Data Processing (2)

• We use JLab's SWIF workflow tools

• to combine all data processing stages, multi- and single-core, into one

workflow, using job-job dependencies to automatically trigger downstream
jobs when ready

• to ultimately get ~100% hands-free success rate for chefs, when combining
job optimization from previous slide, and automatic SWIF job retries

• With a single, easy interface for chefs; no one-off scripts needed, no file-list
generation required.

• Python-based and written with extension to other experiments in mind

• Plus shipping periodic SWIF snapshots to clas12mon for better monitoring (need

to see if scicomp would just support that instead)

Done

