



SoLID Streaming Read Out Consideration Streaming Readout Workshop May 15th, 2020 Alexandre Camsonne Hall A Jefferson Laboratory



#### Outline

- SoLID experiments overview
- Requirements
- GEM detectors
- GEM readout(s)
- Electromagnetic Calorimeter trigger and readout
- Cerenkov readout
- PVDIS DAQ layout
- SIDIS DAQ layout
- Trigger and data rates
- Streaming option for PVDIS consideration

#### **SoLID** experiments overview



- PVDIS configuration
  - Inclusive DIS electrons
  - Trigger Calorimeter + Cerenkov
  - 30 individual sectors
  - 12 KHz/sector = less 500 KHz total



- SIDIS configuration
- Trigger :
  - Electron trigger : Calorimeter+Light Gas Cerenkov
  - Pion trigger
    - Scintillator + calorimeter
  - Main trigger : coincidence  $e\pi$
- 100 KHz of coincidence  $e\pi$
- J/ $\psi$  30KHz triple coincidence ee<sup>-</sup>e<sup>+</sup>

#### **Data Acquisition Requirement and Design**

| Experiments                      | PVDIS                                     | SIDIS- <sup>3</sup> He        | SIDIS-Proton                  | $J/\psi$                                      |
|----------------------------------|-------------------------------------------|-------------------------------|-------------------------------|-----------------------------------------------|
| Reaction channel                 | $p(\vec{e}, e')X$                         | $(e, e'\pi^{\pm})$            | $(e, e'\pi^{\pm})$            | $e + p \rightarrow e' + J/\Psi(e^-, e^+) + p$ |
| Approved number of days          | 169                                       | 125                           | 120                           | 60                                            |
| Target                           | $LH_2/LD_2$                               | <sup>3</sup> He               | NH <sub>3</sub>               | LH <sub>2</sub>                               |
| Unpolarized luminosity           | $0.5 \times 10^{39} / 1.3 \times 10^{39}$ | $\sim 10^{37}$                | $\sim 10^{36}$                | $\sim 10^{37}$                                |
| $(cm^{-2}s^{-1})$                |                                           |                               |                               |                                               |
| Momentum coverage (GeV/c)        | 2.3-5.0                                   | 1.0-7.0                       | 1.0-7.0                       | 0.6-7.0                                       |
| Momentum resolution              | $\sim 2\%$                                | $\sim 2\%$                    | $\sim 3\%$                    | $\sim 2\%$                                    |
| Polar angular coverage (degrees) | 22-35                                     | 8-24                          | 8-24                          | 8-24                                          |
| Polar angular resolution         | 1 mr                                      | 2 mr                          | 3 mr                          | 2 mr                                          |
| Azimuthal angular resolution     | -                                         | 6 mr                          | 6 mr                          | 6 mr                                          |
| Trigger type                     | Single e <sup>-</sup>                     | Coincidence $e^- + \pi^{\pm}$ | Coincidence $e^- + \pi^{\pm}$ | Triple coincidence $e^-e^-e^+$                |
| Expected DAQ rates               | $<20 \text{ kHz} \times 30$               | (<100 kHz)                    | <100 kHz                      | <30 kHz                                       |
| Backgrounds                      | Negative pions, photons                   | $(e, \pi^- \pi^{\pm})$        | $(e,\pi^{-}\pi^{\pm})$        | BH process                                    |
|                                  |                                           | $(e,e'K^{\pm})$               | $(e,e'K^{\pm})$               | Random coincidence                            |
| Major requirements               | Radiation hardness                        | Radiation hardness            | Shielding of sheet-of-flame   | Radiation hardness                            |
|                                  | 0.4% Polarimetry                          | Detector resolution           | Target spin flip              | Detector resolution                           |
|                                  | $\pi^-$ contamination                     | Kaon contamination            | Kaon contamination            |                                               |
|                                  | $Q^2$ calibration                         | DAQ                           |                               |                                               |

#### **GEM Requirements and Design: PVDIS**

□ High rate operation up to localized hit rates of approximately 1 MHz/cm<sup>2</sup>.

□ Instrument 5 locations with GEMs:

□ 30 GEM modules a location: each module with a 12-degree angular width.

| Location | Z (cm) | $R_{min}$ (cm) | $R_{max}$ (cm) | Surface (m <sup>2</sup> ) | # chan                  |
|----------|--------|----------------|----------------|---------------------------|-------------------------|
| 1        | 157.5  | 51             | 118            | 3.6                       | 24 k                    |
| 2        | 185.5  | 62             | 136            | 4.6                       | 30 k                    |
| 3        | 190    | 65             | 140            | 4.8                       | 36 k                    |
| 4        | 306    | 111            | 221            | 11.5                      | 35 k                    |
| 5        | 315    | 115            | 228            | 12.2                      | 38 k                    |
| Total    |        |                |                | $\approx 36.6$            | $\approx 164 \text{ k}$ |

- ➤ The high occupancy at layer #1: may require splitting each readout strip into two channels: this will add another 12 k channels
- So, total number of channels needed could be : ~ 176 k
- With ~ 15% spares (to account for losses during production etc.) need to plan for 200 k readout channels
- > Lot of data at high occupancy; but we can have multiple parallel DAQs

#### **GEM Requirements and Design: SIDIS**

□ Compared to PVDIS, rates a bit lower: 0.15 MHz/cm<sup>2</sup>.

But need to read the whole layer based on a single trigger: no sectors here: no possibility to have many parallel DAQs.

ă∎o⊡

> bandwidth could be an issue: but ways to handle it.

□ Instrument 6 locations with GEMs:

| PI | lane  | Z (cm) | R <sub>I</sub> (cm) | R <sub>o</sub> (cm) | Active area<br>(m²) | # of<br>channels |      |       |
|----|-------|--------|---------------------|---------------------|---------------------|------------------|------|-------|
|    | 1     | -175   | 36                  | 87                  | 2.0                 | 24 k             |      |       |
|    | 2     | -150   | 21                  | 98                  | 2.9                 | 30 k             |      |       |
|    | 3     | -119   | 25                  | 112                 | 3.7                 | 33 k             | -100 | SIDIS |
|    | 4     | -68    | 32                  | 135                 | 5.4                 | 28 k             |      |       |
|    | 5     | 5      | 42                  | 100                 | 2.6                 | 20 k             |      |       |
|    | 6     | 92     | 55                  | 123                 | 3.8                 | 26 k             |      |       |
| tc | otal: |        |                     |                     | ~20.4               | ~ 161 k          |      |       |

- ➢ More than enough electronic channels from PVDIS setup.
- The two configurations will work well with no need for new GEM or electronics fabrication.

recon 1

#### **GEM readout**

- DAQ based on 12 GeV pipelined electronics (Flash ADC) designed for use in Halls B & D. (Supports up to 200 kHz trigger rate and meets PVDIS and reach deadtime systematic of less than 0.1%)
- Added GEM readout similar to SBS but with trigger rates up to 100 KHz
  - APV25 based readout 100 K channels
    3.6 us readout time per sample
    Set limit to 200 KHz in one sample mode and
    60 KHz with 3 samples
    ( note that HPS currently running at 50 KHz

with 6 samples )

• VMM3 chip for remaining channels VMM3 block diagram





- ASIC for ATLAS New Small Wheel
- Radiation hard
- 64 channels
- 6 bit and 10 bit ADC, 8 bits TDC, 12 bits Beam Crossing time stamp
- Deadtimeless up to 4 MHz of rate per channel thanks to multilevel FIFO
- Latency up to 16 µs
- Self triggering path
- Data link up to 320 Mbit/s

# VMM3



Figure 2: Overall connection diagram of the VMM.

### SAMPA

- SAMPA
- 80 or 160 ns shaping time



<u>FEC – Front End Card</u> (160 ch / FEC) <u>CRU – Common Readout Unit</u> (12 FECs / CRU = 1920 ch / CRU

- DCS Detector Control System
- LTU Local Trigger Unit



SAMPA tracking efficiency with full background

#### Efficiency comparison

|                    | APV25 | SAMPA 80ns    | SAMPA 160ns   |
|--------------------|-------|---------------|---------------|
| FA efficiency 0%   | 98.7% | 97.8%         | 74.5%         |
| FA efficiency 100% | 97.3% | 96.7% (95.3%) | 74.6% (83.9%) |
| LA efficiency 0%   | 98.5% | 97.9%         | 76.7%         |
| LA efficiency 100% | 93.4% | 95.4%         | 70.2% (72.3%) |

SAMPA: 80ns shaping time comparable with APV25 160ns significantly lower

#### ECAL FADC trigger



- ECAL trigger main electron trigger for all experiments
- HPS scheme : data from each channel of FADC is integrated and send to the processing trigger module through the VXS backplane
- Cluster of 1 + 6 surrounding blocks to reduce trigger rates coming from background hits
- Will be used for SBS, NPS before SoLID

#### LGC Requirement and Design: Trigger Level Response



# Cerenkov PMT readout

- Light gas Cerenkov
  - 64 channels MAPMT
- MAROC3 close to what we need
  - 64 channels
  - Variable gain
  - Discriminated fast logic signal
  - Missing : analog sum of 8, need sum of 64
  - Radiation hardness is pretty good, need to be tested, possibility of new version to handle Single Event Upset
  - MAROC default option
  - MAROC test board available
  - Will check design with electronics group for FADC analog output
- Possible readout schemes
  - FADC only ( default )
  - FADC + VETROC
  - VETROC only : needs to be evaluated
  - Preferred : Add TDC readout for each Cerenkov channel 232 VETROC additional could improve Cerenkov trigger
  - Need simulation to evaluate options
  - Need to follow with electronics group to start testing





#### PVDIS crate layout



- FADC VXS readout
- Plan to transfer full Waveform

#### DAQ overview PVDIS



- 1800 channels of shower
- 1800 channels of preshower
- 270 channels for Light Gas Cerenkov
- 30 individual sectors
  - 61 shower per sector
  - 61 preshower sector
  - 9 Cerenkov
  - 4700 GEM channels
- Trigger : coincidence Ecal and Cerenkov
- Transfer data from adjacent blocks of neighboring sector for clustering
- Scaling of SBS HCAL trigger from 288 channels (2 crates) to 1800 channels in 15 crates (2 sectors per crate)
- GEM readout using INFN MPD module with optical link to VTP



#### • Similar to Hall D

- Reconfiguration of PVDIS crates to gather data of each trigger to a main VTP to produce the electron pion coincidence
- 100 KHz trigger rate capability

|                           | PVDIS    |
|---------------------------|----------|
| Singles ECAL              | 230 KHz  |
| Singles rates<br>Cerenkov | 803 KHz  |
| Accidental 30 ns          | 4.1 KHz  |
| DIS electron              | 7.7 KHz  |
| Total rate                | 12.1 KHz |

#### SIDIS Trigger Rates

| Rate (kHz)<br>Ecal+LGC(2,2)+SPD(><br>0.425MeV) | 7 modules<br>3 GeV trigger threshold for<br>LAEC<br>+Up window+ down widow |  |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| FA e <sup>-</sup>                              | 60+1.1+1.8                                                                 |  |  |  |  |
| FA hadron no e <sup>-</sup>                    | 29+3.6+5.3                                                                 |  |  |  |  |
| LA e <sup>-</sup>                              | 4.1+3.6+2.6                                                                |  |  |  |  |
| LA hadron no e <sup>-</sup>                    | 7.7+6.5+3.8                                                                |  |  |  |  |
| hadron trigger                                 | 8013+2591+3887                                                             |  |  |  |  |
| SIDIS coin                                     | 31.2                                                                       |  |  |  |  |
| Hadron coin                                    | 14.7+2.52+2.61=19.83                                                       |  |  |  |  |
| Total rate                                     | <85 kHz (30ns time window)                                                 |  |  |  |  |

# Event size data rates PVDIS

|      |                 | Max data rate | Occupancy | Fired strips | Event size | Data rate MBs | After noise cut | strips firing | event size<br>bytes |         | MB/s  |
|------|-----------------|---------------|-----------|--------------|------------|---------------|-----------------|---------------|---------------------|---------|-------|
| 1    | 1156            |               | 21.17     | 244.73       | 3038.03    | 60.76         | 9.97            | 115.25        | 1430.76             | 1430.76 | 28.62 |
| 2    | 1374            |               | 10.35     | 142.21       | 1765.39    | 35.31         | 5.11            | 70.21         | 871.61              | 871.61  | 17.43 |
| 3    | 1374            |               | 8.81      | 121.05       | 1502.71    | 30.05         | 4.42            | 60.73         | 753.92              | 753.92  | 15.08 |
| 4    | 2287            |               | 3.07      | 70.21        | 871.60     | 17.43         | 1.64            | 37.51         | 465.61              | 465.61  | 9.31  |
| 5    | 2350            |               | 2.79      | 65.57        | 813.93     | 16.28         | 1.50            | 35.25         | 437.60              | 437.60  | 8.75  |
|      |                 |               |           |              | Total      | 159.83        |                 |               |                     | Total   | 79.19 |
| FADC |                 |               |           |              |            |               |                 |               |                     |         |       |
|      | 20000           |               |           |              |            |               | 10              |               |                     |         |       |
|      | Event size FADC | Nb channel    | Header    |              |            | Trailer       | Sample          |               |                     |         |       |
|      | Calorimeter     | 14            | 4         |              |            | 4             | 12              | 280           |                     |         |       |
|      | Preshower       | 9             | 4         |              |            | 4             | 12              | 180           | 400                 |         |       |
|      | Cerenkov        | 9             | 4         |              |            | 4             | 12              | 180           |                     |         |       |
|      |                 |               |           |              |            |               |                 |               |                     |         |       |
|      |                 |               |           |              |            |               |                 |               | 11600000            |         |       |
|      |                 |               |           |              |            |               |                 | 740           | 11600000            | 11.6    |       |
|      |                 |               |           |              |            |               |                 |               | Total rate          | 94      | MB/s  |

About 0.094x30 = 2.9 GB/s for PVDIS at 20 KHz

#### SIDIS event size

#### Occupancies with one sample readout for 100 KHz rate

| GEM   | Occupancy | Number of strips firing | XY strips | Strips per chambers | Max rate<br>MB/s | MB/s   |
|-------|-----------|-------------------------|-----------|---------------------|------------------|--------|
| 1     | 2.21      | 453                     | 906       | 27180               |                  | 245    |
| 2     | 8.78      | 510                     | 1020      | 30600               |                  | 1184   |
| 3     | 3.63      | 583                     | 1166      | 34980               |                  | 559.5  |
| 4     | 2.31      | 702                     | 1404      | 42120               |                  | 428.7  |
| 5     | 1.78      | 520                     | 1040      | 31200               |                  | 244.71 |
| 6     | 1.3       | 640                     | 1280      | 38400               |                  | 220    |
| Total | 20.01     | 3408                    | 6816      | 204480              |                  | 2901   |

GEM dominating 2.9 GB/s same requirement as PVDIS



| Cost        |                  |      |           |          |               |        | 2018       | 2020    | 2023   |
|-------------|------------------|------|-----------|----------|---------------|--------|------------|---------|--------|
|             |                  | Days | Data rate | Seconds  | Total data TB | Double | DLO8 in \$ | LTO 9   | LTO10  |
| E12-11-108  | Pol proton       | 120  | 3900      | 10368000 | 40435         | 80870  | 473850     | 242611  | 126360 |
| E12-12-006  | J/Psi            | 60   | 4000      | 5184000  | 20736         | 41472  | 243000     | 124416  | 64800  |
| E12-10-006  | Transv. Pol. 3He | 90   | 6000      | 7776000  | 46656         | 93312  | 546750     | 279936  | 145800 |
| E12-11-007  | Long. Pol. 3 He  | 35   | 6000      | 3024000  | 18144         | 36288  | 212625     | 108864  | 56700  |
| E12-10-007  | PVDIS            | 169  | 6000      | 14601600 | 87610         | 175219 | 1026675    | 525658  | 273780 |
|             | Total            | 474  |           | 40953600 | 213581        | 427162 | 2502900    | 1281485 | 667440 |
| Actual days | Actual years     |      | Time in s |          |               |        |            |         |        |
| 948         | 2.60             | 474  | 40953600  |          |               |        |            |         |        |
|             |                  |      |           |          |               |        |            |         |        |
| Tapes       |                  |      |           |          |               |        | 2018       | 2020    | 2023   |
|             |                  | Days | Data rate | Seconds  | Total data TB | Double | DLO8 in \$ | LTO 9   | LTO10  |
| E12-11-108  | Pol proton       | 120  | 3900      | 10368000 | 40435         | 80870  | 6318       | 3235    | 1685   |
| E12-12-006  | J/Psi            | 60   | 4000      | 5184000  | 20736         | 41472  | 3240       | 1659    | 864    |
| E12-10-006  | Transv. Pol. 3He | 90   | 6000      | 7776000  | 46656         | 93312  | 7290       | 3732    | 1944   |
| E12-11-007  | Long. Pol. 3 He  | 35   | 6000      | 3024000  | 18144         | 36288  | 2835       | 1452    | 756    |
| E12-10-007  | PVDIS            | 169  | 6000      | 14601600 | 87610         | 175219 | 13689      | 7009    | 3650   |
|             | Total            | 474  |           | 40953600 | 213581        | 427162 | 33372      | 17086   | 8899   |
| Actual days | Actual years     |      | Time in s |          |               |        |            |         |        |
| 948         | 2.60             | 474  | 40953600  |          |               |        |            |         |        |

#### Trigger and data rates

|                      | PVDIS    | SIDIS    | J/ψ      |
|----------------------|----------|----------|----------|
| Trigger rate maximum | 20 KHz   | 100 KHz  | 30 KHz   |
| Data rate            | 3.3GB/s  | 3.36GB/s | 3.90GB/s |
| Running time         | 169 days | 125 days | 60 days  |
| Total raw data       | 48.2 PB  | 36.2 PB  | 40.4 PB  |

Expected SIDIS rate is 85 kHz Table numbers are without compression. If compressing may reduce data rates and size by 2.5

SoLID DAQ Streaming Workshop

# SoLID Streaming Readout

- L3 farm not included in project, seems tape silo can handle rate, triggered DAQ default solution
- Data dominated by GEM data
- Switch to VMM3 makes the system full streaming capable
- PVDIS is a good candidate for streaming since sectors are independents
- If computing resources available, would like to process more the data (tracking) to reduce the data size

# PVDIS streaming per sector



PVDIS semi-streaming per sector (activate suppression on board)



# Conclusion

- SoLID high luminosity experiment 10^39 cm-2.s-1
- PVDIS could run SRO straightforwardly, more difficult for SIDIS
- Need to evaluate required computing resources
- Baseline triggered
- SRO limitation in high background, high occupancy conditions
- VMM3 gives streaming and L3 options for GEMs
- SAMPA would be a good option if radiation hardness is sufficient but costly

# Backup

### SILO capabilities

- Mix of LTO 5 to LTO 8 : 24 drives total
  - Current 5 GB/s
    - 8 drives LTO5
    - 8 drives LTO6
    - 4 LTO7 (300 MB/s)
    - 4 LTO8 (360 MB/s)
  - each LTO8 drive is 360 MB/s about 10 K\$ each
  - Max : 24 \* 360 = 8.64 GB/s
  - to handle 1 GB/s : 4 drives about 40 K\$
  - increase to 4 GB/s (1GB + dup + read) about 120 K\$
  - can upgrade all to LTO8 more : 200 K\$ -> 8.64 GB/s
  - need to write and read at same time
  - LTO8 available in 2017

# Silo capabilities

|                     | 2008 | 2010  | 2012   | 2015   | 2018    | 2020    | 2023    |
|---------------------|------|-------|--------|--------|---------|---------|---------|
| LTO                 | 4    | 5     | 6      | 7      | 8       | 9       | 10      |
| capacity            | 0.8  | 1.5   | 2.5    | 6.25   | 12.8    | 25      | 48      |
| capacity compressed | 1.6  | 3     | 6.25   | 15     | 32      | 62.5    | 120     |
| price               | 35   | 20    | 26     | 135    |         |         |         |
| data rate           | 120  | 140   | 200    | 300    | 472     | 708     | 1100    |
| data rate c         | 240  | 280   | 400    | 750    | 1180    | 1770    | 2750    |
|                     |      |       |        |        |         |         |         |
|                     |      |       |        |        |         |         |         |
|                     |      |       |        | 126    |         |         |         |
| Total size silo     |      | 16.86 | 28.1   | 70.25  | 143.872 | 281     | 539.52  |
|                     |      | 33.72 | 70.25  | 168.6  | 359.68  | 702.5   | 1348.8  |
|                     |      |       |        |        |         |         |         |
|                     |      |       |        |        |         |         |         |
|                     |      |       |        |        |         |         |         |
| Max size            |      | 28740 | 47900  | 119750 | 245248  | 479000  | 919680  |
|                     |      | 57480 | 119750 | 287400 | 613120  | 1197500 | 2299200 |
|                     |      |       |        |        |         |         |         |
| Max rate            |      | 1680  | 2400   | 3600   | 5664    | 8496    | 13200   |
|                     |      | 3360  | 4800   | 9000   | 14160   | 21240   | 33000   |

#### SAMPA occupancies SIDIS (160 ns shaping)

| Chamber | 1 sample<br>% | 6 samples<br>% | 6 samples<br>Noise cut<br>% | 9 samples<br>% | 9 samples<br>Noise cut<br>% |
|---------|---------------|----------------|-----------------------------|----------------|-----------------------------|
| 1       | 4.0           | 10             | 4.33                        | 8.5            | 6.1                         |
| 2       | 13.7          | 26.4           | 11                          | 30.3           | 13.2                        |
| 3       | 5.79          | 14.2           | 6.14                        | 17.9           | 8.38                        |
| 4       | 3.76          | 9.2            | 3.93                        | 11.8           | 5.56                        |
| 5       | 3.36          | 8.67           | 3.80                        | 11.3           | 5.43                        |
| 6       | 2.50          | 6.5            | 2.85                        | 8.53           | 4.10                        |

SAMPA data rates SIDIS (160 ns shaping)

- Occupancies higher than with APV25
- Data rates assuming processing and recording one amplitude for 100 KHz
  - 1 samples : 4.4 GB/s
  - 6 samples : 4.2 GB/s
  - 9 samples : 5.7 GB/s
- Need to evaluate if tracking can be improved offline if record more samples in data file
- Data reduction on the fly desired with additional processing than noise cut

SAMPA tracking efficiency with full background

#### Efficiency comparison

|                    | APV25 | SAMPA 80ns    | SAMPA 160ns   |
|--------------------|-------|---------------|---------------|
| FA efficiency 0%   | 98.7% | 97.8%         | 74.5%         |
| FA efficiency 100% | 97.3% | 96.7% (95.3%) | 74.6% (83.9%) |
| LA efficiency 0%   | 98.5% | 97.9%         | 76.7%         |
| LA efficiency 100% | 93.4% | 95.4%         | 70.2% (72.3%) |

SAMPA: 80ns shaping time comparable with APV25 160ns significantly lower

# GEM APV readout with SSP

- Implementation of noise rejection on SSP for SBS
- Need to evaluate rejection factor for SoLID background
- Check ultimate performance for trigger rates

# Test stand at JLAB : SAMPA





\*LHCb will move to a triggerless-readout system for LHC Run 3 (2021-2023), and process 5 TB/s in real time on the CPU farm.

#### GEM – Readout Electronics



# SSP data reduction



### SSP data reduction





- Common noise subtraction
- Zero suppression
- Transfer 6 samples

# SSP implementation

• First implementation up to 4 MPDs



- Offline vsonline
  treatment
- Very good efficiency of online treatment

#### LGC Requirement and Design: Trigger Level Response



- A coincidence trigger between MaPMTs in a single sector plus a threshold for the number of photoelectrons detected per sector is required. Typically this is expressed as:
  - (# of PMTs in coincidence) x (number of PE's per PMT) •
  - A 2x2 trigger is expected to keep a 95% efficiency and rates within DAQ requirements.

•