TRIDAS: a **TRI**ggerless **D**ata **A**cquisition **S**ystem

Tommaso Chiarusi - INFN Sezione Bologna

Supported by Italian Ministry of Foreign Affairs (MAECI) as Projects of great Relevance within Italy/US Scientific and Technological Cooperation under grant n. MAE0065689 - PGR00799

Astrophysical source searches

with angular resolution < I deg over a km³ scale

No bunch-crossing time info

Abyssal sites

Undersea only: 40K and bioluminescence e.g.: > 50 kHz @ 10'' PMT (0.3 p.e. threshold)Signal (atm. μ) to noise ratio < 10⁻⁴

Tommaso Chiarusi – (INFN – INFN Sezione di Bologna

TriDAS original constraints **Very small neutrino cross-sections**

$$\sigma_{\nu N} \sim 7.8 \times 10^{-36} \left(\frac{E}{GeV}\right)^{0.36} [cm^2] \text{ for } E_{\nu} > 1$$

Very small expected fluxes

$$\frac{dN_{\nu}}{dE} \sim 9 \times 10^{-9} \left(\frac{E}{GeV}\right)^{-2} \qquad [GeV^{-1} \ cm^{-2} \ sr^{-1} \ sm^{-1} \ sm^$$

- O(km³) volume size detector
- many detector elements
- many years uptime
- -Time resolution of O(1ns) - Positioning resolution O(10 cm)
 - Simple detector off-shore
- On-line Trigger on-shore
- \Rightarrow Continuous data taking

Note: in nu-Tel, the S/N is $< 1E-6 \parallel \parallel$

Neutrino Telescopes

	Time-slice <i>i-1</i>																						
ahr dr	มใบ สินโล	ıllı	nl. i	đĿ	the	al af		rlat fa	iffre	ıl.	ıth.	dah	ath	dr`	лh	duh.	սիւ	dr.	ult	վոհ	ıtlı	nl. a	at d
alt de	alt auf	ıth	nl, n	ab	uli	մեսք	11	rla b	ıthe	ղե	ıth.	dah	ah	dr`		J.h.	hr	dr.	allı	dn b	ıtlı	al. a	a kart
ahr dr	ահ կոն	11 Ic	11, 1	đĿ	the	al, af	1.	dath	the	ıl.	ufh.	dah	alı	lr`.	лII	1.h	-illi	dr.	atlı	վոր	ıllı	al. a	a fa a f

đ	Ĺ	[1	E.
d	Ĺ	[1	Ē
đ	Ĺ	[1	E

Tommaso Chiarusi –

INFN – INFN Sezione di Bologna

. .

	A similar DAQ model is applied to ANTARES and KM3NeT.
gregation d routing	a) It exploits fixed latency electronics for
	distribution (different implementations)
Itering	b) The recorded type and numbe information per each hit may be different.
	c) It can be generalised for other application with the due dimensioning of resources.
ge & control	

Throughput comparisons

Tommaso Chiarusi – (INFN – INFN Sezione di Bologna Stariesteri edel Affait Esteri edel Cooperazione Internazional

Interfacing TriDAS to Clas12 FT-ECal

TriDAS Hierarchical State Machine

Cluster Machines

Distributed Filesystem

1 Socket / 16 channels

Notation:

TS: Time Slice STS: Sector Time Slice, containing data from 12 x N channels

INFN – INFN Sezione di Bologna Tommaso Chiarusi –

وعباب والاستعاد والمحصل والمحص

ويتلق والانتهان والتعالي والمروطية ومناتب الترويات والتواتين

يتلتج وليتن والمتعاد والمحصل ومناتجة والمحصل و

ալիշու վար, ալիշու ալիշու վերագիր, վերագիր, ալիշակի, ալիշակի

STS N+1

Sector N FADC-Boards = $N \times 16$ channels

induced muon or shower. not time ordered, by the EM into a file.

TCPU / TCPU 2 TCPU 3 Triggered TTS TCPU n

Aim of the tests:

- optimising the performance of data receptions (HM level)
- optimising the performance of data filtering (TCPU level)
- Studying memory + cpu consumption
- Studying online monitoring and coherence with recorded data

Recent (ongoing) tests of TriDAS with Clas12							
(no hoam) - low thresholds	≻	11 10					
(no beam) - low thresholds		9					
Situation:		8					
		7 6					
 inhomogeneous distribution of many channels with 							
		1					
		-1					
Inpute for revision:		-2 -3					
		-4					
Need of a revision of part of the TriDAS design for:		-5					
reed of a forfoldt of part of the mb/ to acoign for		-6 -7					
 enhancing the flexibility and resilience; 		-8					
		-9					
 focus to the used detector; 		-10 -11					
 In particular, aiming to combine multiple sub- 							

detectors, also the trigger-layering design must be expanded (possible evolution from HTC \rightarrow HPC).

An implication is to invest in on-line reconstruction, and focus on computing resources.

Final considerations

	FTC FADC SCALERS																				
								1815	382	2	13462	408	56935								
					13588	21854	22	332	1920	3322	519	5447	20686		6815	1366					
				12997	406		59760	1	5029	1406	51531	21458	23310	38741	2428	15377	30989				
			3173		101	93	30509	982	1541	20	6537	11	20326	7448	14	1883	417	4917			
		9900	28835	2130	161	90	774		8204	111	24834	13512	10106	9753	5096	184	2933	2090	6492		
	6881	4771	444	722		5	18402	3002	40	81	29205	3096	1107	11943	893	1404	15020	2458	4222	778	
	214	9	6323		384	2746	2049	680	3737	326	2125	580	527	4401	176	504	25233	703	2726	395	
	2839	320	30199	5087	1501	828	61	93	6272 3967							34150	10392	71	689	2896	
420	2780	296	12868	6	182	9262	64110 Max: 66626 kHz 44398								1756	1118	543	21043	8105	1061	1038
327	3791	32	254	3341	2	82	Total: 1952.6 MHz									3030	13022	3	4018	8435	174
2096	35	447	45	786	4713	44	Beam Right								23166	504	1320	13128	1759	1751	1145
36	44	1673		673		84			Х-/	Asv:	+41.	7%			4798	2531	379	3518	1470	1433	19087
	6451	1297	1289	594		190		I	Y-/	Asy:	+16.	8%			8455	439	7292	4496	7328	2671	3403
37	20	1398		64		563	2910	р	ositiv	e ='be	eam to	p/rig	ht	7107	12704	2467	1631	11422	2646	1215	965
	24481	10127	170	48			78		and the second				35917	46	527	2136	2438	4203	13103	4331	
0	253	3350					104	122	608	419		10111	46837	3757	1916	1124	1088	2322	131	365	
	950	4510	39	36			227	98	15	33	103	40888	520	2416	113	1614	8211	2484	6715	1595	
			197	916			611	56	1728	271	352	10857	3548	21453	2092	3496	3848	1672	8414		
			3	4158			354	19759	392	50	41695	13237	413	13668	5915	251	5075	2497			
				3			27287	25248			477	43018	4334	796	536	1044	1119				
					141	1		955	25	1775	9	13777	20573	543	8529	569					
				_		_		14410	319	474	47359	66625	80		_		_				
11	10	9	8	7	6	5	4	3	2	1	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11
									15/4/2	020 21	:05:57										Х

Consider that with nu-Tel, most of data are to be rejected. In Clas12-like experiment, most of data are good events.

Conclusions and Outlook

- Trigger-less approach derived from DAQ system of large scale neutrino telescopes in the Mediterranean Sea
- TriDAS design is modular and scalable with incoming throughput;
- Some constraints derived by nu-Tel assumptions imply to review TriDAS for JLab detectors (e.g. Clas12)
- Early 2020 tests @ JLab with Clas12 produced data for analysis (search for $\pi 0$)
- Stress tests are ongoing with Clas12 FTCAL (although without beam)
- Improve the integration with auxiliary software developed @ JLab (JANA)
- Review (rethink) the trigger-layers model
- Interaction between TriDAS developers with JLab's SRO team

Thank you!

- C. Pellegrino, et al., The trigger and data acquisition for the NEMO-Phase 2 tower, DOI 10.1063/1.4902796, AIP Conference Proceedings (2014).
- (20|4).
- TriDAS web site: https://bitbucket.org/chiarusi/tridas.
- R. Ammendola et al., NaNet3: The on-shore readout and slow-control board for the KM3NeT-Italia underwater neutrino telescope, EPJ Web of Conferences 116,05008 (2016).
- M. Favaro, et al., The Trigger and Data Acquisition System for the KM3NeT-Italia towers EPJ Web of Conferences 116, 05009 (2016)
- M. Manzali, et al., The Trigger and Data Acquisition System for the KM3NeT-Italy neutrino telescope, Proceedings of CHEP 2016
- BDX proposal: <u>https://arxiv.org/abs/1607.01390</u>

Further readings _____

T. Chiarusi, M. Spurio, High-energy astrophysics with neutrino telescopes, DOI: 10.1140/epjc/s10052-009-1230-9, The European Physical Journal C (2010). M. Pellegriti et al., Long-term optical background measurements in the Capo Passero deep-sea site, DOI: 10.1063/1.4902780, AIP Conference Proceedings

C. Pellegrino, T. Chiarusi, The TriDAS for KM3NeT neutrino telescope, DOI 10.1051/epjconf/201611605005, VLVNT 2015 Conference Proceedings (2015).

- Simulated Poissonian single rate per cahnnel: **100 kHz**
- N. of TCPUs: 4 nodes (**32 cores** Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz)
- Concurrent TimeSlice processing: **20 TS in parallel/node**
- Time Slice duration : **200 ms**
- L1 event length: 6 µs
- 1 Sector = **7 WaveBoards** (84 channels)

Tommaso Chiarusi –

Farnesina Ministero degli Affairi Steri e della Comparisona Internazionale

It means that for N>4 Sectors (336) channels at 100 kHz single rate!) additional TCPU nodes are needed (or more trigger threads, if allowed by the computing resources).

Granny's recipe:

add TCPU as much as it suffices !!

...without affecting the DAQ design. Scalability is granted!

