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Introduction Jefferonlab

* With increase of luminosity for accelerator colliders as well as a granularity of detectors for particle physics,
more challenges fall on the readout system and data transfer from detector front-end to computer farm and
long term storage.

* Modern (triggered) data acquisition systems (LHC, KEK, Fair) employ several stages for data reduction.

* The CMS experiment at LHC has a Level 1 trigger that makes a decision in ~4 ps and rejects 99.75%
of events.

* Their High Level Trigger (software), decision ~100 ms, rejects 99.9% of the data from Level 1.

* Concepts of trigger-less readout and data streaming will produce large data volumes being read from the
i detectors. Most of this will be uninteresting and ultimately discarded.

* From a resource standpoint, it makes much more sense to perform data pre-processing and reduction at
early stages of data streaming.

* Our project mostly inspired by work carried out at CERN, and progress in ML application on FPGA

At the LHC, data rates at the CMS and ATLAS, are of the order of hundreds of terabytes per second.
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Example from CMS JeffersonLab .

The task of the real-time processing is to filter

events to reduce data rates to manageable Machine Learning Inference with FPGAs
levels for offline processing called triggering_ Reconstruction, Trigger, and Machine Learning for the HL-LHC @ MIT
April 26th, 2018

Level-1 typically uses custom
hardware with ASICs or FPGAs.

The second stage of triggering,
High Level Trigger (HLT), uses
commercial CPUs to process the
filtered data in software.

Current CMS Data Processing

1 kHz
100 kHz 1 MB/evt
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Level 1 Trigger (hardware) High Level Trigger (software)
Decision in ~4 us Decision in ~100 ms
99.75% rejected 99% rejected

After trigger, 99.99975% of events are gone forever!

Rejection is mostly defined by cross section of interesting physics processes.




Motivation Jefferonlab

e The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms
for real time data processing. ‘

* Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for
FPGA architectures.

Level 1 works with Regional 107 s ) Collision rate 10° Hz o

and Sub-detector Trigger %/ Channel data sampling at 40 MHz a

imiti Q Level-1 selected events 10° Hz =

primitves . \“? Particle identification (High p, e, p, jets, missing E,) 58

« Local pattern recognition 0

10¢ s * Energy evaluation on prompt macro-granular information g
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Using ML on FPGA many tasks f/ Level-2 selected events 10° Hz 2

from Level 2 can be performed \2 Clean particle signature (Z, W, ..) .
* Finer granularity precise measurement

at Level 1 * Kinematics. effective mass cuts and event topology .‘E’

 Track reconstruction and detector matching E
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Level-3 events to tape 10..100 Hz 2

@ Physics process identification (o)

* Event reconstruction and analysis

Continuous Filtering
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for high throughput, not low latency.

While the large numerical processing capability of GPUs is attractive, these technologies are optimized |

FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency

requirements that are unique to particle physics.

@
150
E/) Terabytes/ Sec
CMS
Sensor

Machine learning methods are widely used and have proven to be very powerful in particle physics.

However, exploration of the use of such techniques in low-latency FPGA hardware has only just begun.

XILINX.

CASE STUDY

Xilinx FPGA

Data T
, age
Align rigger

Tracking Al

Inference

and
Clustering

=)

Wy

100ns

Figure 2: Compared to alternative devices such as GPUs and ASICs, FPGAs are the only viable choice for the event trigger processing
because they provide extremely low latency. While the large numerical processing capability of GPUs is attractive, these technologies are

optimized for high throughput, not low latency.

https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf
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EIC rates estimation JefferSonLab

Jin Huang <jhuang@bnl.gov> YR kick-off meeting

Despite the fact that it is
possible to record everything,
it’s better to be able to filter or

prescale events with a large Slgnal data rate -> DAQ strategy

Ccross section
Note sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/ , Simulation: https://eic-detector.github.io/

Need a large computer farm » What we want to record: total collision signal ~ 100 Gbps @ 1034 cm2 st
. o Assumption: sSPHENIX data format, 100% noise

to ha nd Ie streami ng data .In o Less than sPHENIX peak disk rate. 10* comparing to LHC collision
terms of resources, it makes » Therefore, we could choose to stream out all EIC collisions data

£ d » In addition, DAQ may need to filter out excessive beam background and
sense to perrorm data pre- electronics noise, if they become dominant.

i i o Very different from LHC, where it is necessary to filter out uninteresting p+p collisions
Processing a nd red uction at (CMS/ATLAS/LHCb) or highly compress collision data (ALICE)
the ea r‘|y Stages of data o Such filtering does not require real-time event reconstruction
streaming. 14 . . , :
EIC-sPHENIX simulation

| [Ile-+p, v/s = 140 GeV, L =103 cm™? 5™
Signal rate for tracker + calorimeter = 40 Gbps

-
N

—
o

_-p + p(beam gas), 250 GeV/c, |z|<450 cm
I(p) = 1A, Vac = 10" mbar, Gas event @ 12 kHz
M Beam gas bgd rate for tracker + calorimeter = 1 Gbps

[o]

Belle Il, 8 megapixels PXD__
produces ~200 Gbps

@ 30 kHz trigger rate.
(beam background, noise
and synchrotron)

)]
T

Conservative
MAPS noise
r

S

N

Average signal data ratdl per subsystem (Gbps)

o

C-EMCal C-HCals e-EMCal h-EMCal h-HCal MAPS TPC GEMs
Subsystem
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ML-FPGA project
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Physics signatures example JefferdonLab

There are many physics signatures which could benefit from jet substructure and electron
identification in real-time.

In our project, we focus on the electron/hadron identification and on the classification of jets
as either a quark (q) ) (light and heavy) or gluon (g).

QPM QCD-Compton

p(p)

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS.

Published in 2007
Measurement of multijet events at low $x_{Bj}$ and low $Q*2$ with the ZEUS detector at HERA
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ML FPGA test setup JefferSon Lab

* To demonstrate the operating principle of the ML FPGA, we propose to use the existing setup of the
ongoing EIC detector R&D project (eRD22) "GEM based Transition radiation detector (TRD) and tracker".

* Asmall 10x10 cm GEM-TRD prototype and fADC125 can generate up to 128 GB/s of raw data traffic.

* This detector, in addition to a track coordinate (UTPC mode), has capabilities of electron identification or
electron/hadron separation, which is highly important for EIC physics.

* Forthe GEM-TRD project we already use offline Machine Learning tools (JETNET, ROOT-based TMVA),
and the results can be used for validation of the proposed implementation of FPGA-based neural
networks .

A FPGA-based Neural Network application would offer online particle identification and allow for data
reduction based on physics at the early stage of data processing.

* Another important part of the project is evaluation of advantages of "global PID" compared to the
standalone PID from each detector. To test the global PID performance we plan to integrate the EIC
calorimeter prototype (3x3 modules) into the ML-FPGA setup.

' * Preprocessed data from both detectors including decision on the particle type will be transferred to
another ML-FPGA board with neural network for global PID decision.

* Real beam testing is planned in Hall D, where there is already a test beam site that can be used for
testing the prototype GEM-TRD, ECAL and Modular RICH detectors.

< _M o —_——__Sﬁl’m’y Furletov e e 10




| GEM-TRD prototype JefferfonLab ..

, * A test module was built at the University of Virginia
« The prototype of GEMTRD/T module has a size of 10

cm x 10 cm with a corresponding to a total of 512
channels for X/Y coordinates.

* The readout is based on flash ADC system developed
at JLAB (fADC125).

« Still need to modify a FADC125 board with serial
streaming interface (in progress).

* GEM-TRD provides e/hadron separation and tracking

pion / / electron
Radi Entrance
adiator window -3 2000
7 e © i
(V)
©
_ 2 1500
. (v} o
Primary 3 - WY Drii E drift
de/dx | TR / 3 e
— 3 1000 -
clusters/ ~ photon Xe gas 8 i
mixture =
A I
_— 0 B Amplification e—— U B _ M]JM edestal
1 I 111 I 1

/ Readout region N emeeemmmemeeeeee 0 rll I
40 60 80 100 120 140 160 180 200

fadc time, 8ns

—————— —




Beam setup at JLab Hall-D JefferfonLab

« Tests were carried out using electrons with an energy of 3-6 GeV, produced in the converter
of a pair spectrometer. ‘

« The electron enerqy is known from the pair spectrometer.

« The radiator is mounted in front of the GEM-TRD and covers about half of the sensitive
area.

* We do not have hadron beam in this setup:

v’ The effect of TR is evaluated by comparison of data from electrons with
radiator and electrons without radiator.

Pair spectrometer
converter

Photon

Beamline

6-12 GeV

Electrons
3-6 GeV
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A/l data was divided into 2 samples:

« Top right plot shows neural network output for single module:

> Red - electrons with radiator
> Blue - electrons without radiator
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Tracking with GEM-TRD Jefferonlab

GEM-TRD can work as mini TPC, providing 3D track segments

reconstructed track angle E asf Eosf |
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FPGA board for ML JefferSonLab

At an early stage in this project, as hardware to test ML algorithms on FPGA , we use a standard Xilinx
evaluation boards rather than developing a customized FPGA board. These boards have functions and
interfaces sufficient for proof of principle of ML-FPGA.

The proposed Xilinx evaluation board includes the Xilinx XCVU9P and 6,840 DSP slices. Each includes a

hardwired optimized multiply unit and collectively offers a peak theoretical performance in excess of 1 Tera
multiplications per second.

Second, the internal organization can be optimized to the specific computational problem. The internal data
processing architecture can support deep computational pipelines offering high throughputs.

Third, the FPGA supports high speed 1/0 interfaces including Ethernet and 180 high speed transceivers that
can opera te in excess Of 30 GbpS Featuring the Virtex® UltraScale+™ XCVU9P-L2FLGA2104E FPGA

Ethernet Port
(10/100/1000 Mb/s Tri-Speed Ethernet) XCVU9P-LGA2104E
RLDRAM3 72-bit
(2 x 36 Components)

aw Y (e b e g
i3 i . Pl User LEDs
FMC+ @ I—.- q
(24 x GTY) B vcu118-board-image = |
{ ¥

-

Xilinx Virtex® UltraScale+™ B

SYSMON Header

USB-JTAG Connector
JTAG Header
USB-UART Connector

Samtec FireFly Interface
(4 x GTYs)

Pmod Headers
QSFP28
(4 x GTYs)

PMBus Header

QsFP28
(4x GTYs)

User Push Button
Switches

DDR4 80-bit PCle Edge Connector DDR4 80-bit
(5 x16 Components)  Gen3 x16, Gend x 8 (5 x 16 Components)
Bottom Side of Board (16 x GTYs)
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Creating ML FPGA Core

.;gﬂ;zon Lab
omas Jefferson National Accelerator Facility

e Vivado High-Level Synthesis (HLS) transforms a C, C++, or SystemC design
specification into Register Transfer Level (RTL) code for synthesis and @pard
implementation by the Vivado tools. @

par8

» Using HLS significantly decreases development time. (at the cost of lower @par?
efficiency of use of FPGA resources). @paré

@par5
Machine Learning hlS 4 mI @par4
Frameworks CMS L1 Trigger @par3
_P ! | @par2
Tensor Trained Converted @par1
Model HLS Project @par0

Keras ] P

FPGA Firmware M L Core
PYTSRCH V|VADO'

microblaze_0_axi_periph - Vivado™ HLS
+ ) —
XILINX CHSEEILDY R ’
= ACLK
o
——— ARESETN L =
#—= S00_ACLK axi_uartlite_0
j——— S00_ARESETN -Y- MOO_AXI + i \
MOO_ACLK <=M MO1AXI + S.AXI
¥ S i i UART || e >
b—— M00 ARESETN g2 g MO2_AXI + _l s axi_aclk oy T I rs232_vart
MO1_ACLK s_axi_aresetn -
j—— MO1 ARESETN
MO2_ACLK AXI Uartlite
j———{ M02_ARESETN axi_gpio_0
L
AXI Interconnect w1+ S_AXI
= ety GPIO + ||| > push_buttons_5bits
. - Grio2 +||f [ led_8bits
microblaze_0 . s_axi_aresetn
= microblaze_0_local_memory -
mdm_1
— AXI GPIO
. !! + INTERRUPT S0 <7
MBDEBUG_O + ||} |||+ DEBUG . o I & H
Debug_SYS_Rst —— ik MicroBlaze !
M_AXI_DP - e
L ) —== Reset - .
MicroBlaze Debug Module (MDM)

MicroBlaze
rst_clk_wiz_0_100M

p
’—% slowest_sync_clk
ext_reset_in

mb_reset

bus_struct_reset{0:0]
clk_wiz_0 aux_reset_in peripheral_reset[0:0] jm
mb_debug_sys_rst interconnect _aresetn[0:0] @
default_sysclk1_300 [> |ll+ cLk N1 D clk_outl dcm_locked peripheral_aresetn[0:0]
reset [ reset locked

Processor System Reset
Clocking Wizard

N 5/14/20
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Xilinx HLS: C++ to

Verilog Jef

jomas Jefferson National Accelerator Facility

10/ mm e
2 // float_regex.sh:: converted to (tx_t)
€
L R cxx file ---------

5 #include "trd_ann.h"

6 #include <cmath>

70 /*

8 fx_t ann(int index,fx_t 1ne,fx_t 1nl,fx_t 1n2,fx_t 1n3,fx_t 1n4,fx_t 1n5,fx_t 1n6,fx_t 1in7
9 inputd = (1n0 - (fx_t)1.96805)/(fx_t)7.63362;

10 1inputl = (inl - (fx_t)4.75766)/(fx_t)11.9138;

11 1input2 = (1n2 - (fx_t)4.40589)/(fx_t)11.4831;

12 1input3 = (1n3 - (fx_t)4.24519)/(fx_t)11.2533;

13 input4 = (1nd4 - (fx_t)4.30175)/(fx_t)11.2252;

14  1input5 = (1n5 - (fx_t)3.87414)/(fx_t)10.1781;

17/
2// RTL generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
3// Version: 2019.1

4// Copyright (C) 1986-2019 Xilinx, Inc. All Rights Reserved.

57/
67/
7

8 timescale 1 ns / 1 ps

9

10 (* CORE_GENERATION_INFO="trdann,hls_ip_2019_1,{HLS_INPUT_TYPE=cxx,HLS_INPUT_FLOAT=1
11

12 module trdann (

15  inputé = (in6 - (fx_t)3.75959)/(fx_t)9.69367; 13 ap_clk,

16 input7 = (in7 - (fx_t)3.84352)/(fx_t)9.66213; 4 ap_rst_n,

17 input8 = (in8 - (fx_t)3.65047)/(fx_t)9.09565; 15 S_ax1_AXILiteS_AWVALID,

18 input9 = (in9 - (fx_t)5.96775)/(fx_t)11.3203; i? :-:ii-:;;tit::-::igggY'

;g z:§;cgflndeX) { 18 s_axi_AXILiteS_WVALID,

21 return neuron0x32b4c90(); ;Z 2_221_Xiti::§_:g§§r'

2| el S ey

2| 1} - 22 s_axi_AXILiteS_ARVALID .

22 c vy A¥XT]l31+co ARREAD

22 z/ 24 s_axi_AXILiteS_ARADDR, Verllog

27= fout_t trdann(int index, finp_t input[10]) 25 s_ax1_AXILiteS_RVALID,

28 inpute = (fx_t(input[0]) - (fx_t)1.96805)/ 26 s_axi_AXILiteS_RREADY,

29 inputl = (fx_t(input[1]) - (fx_t)4.75766)/(fx_ 27 S_ax1_AXILiteS_RDATA,

30 input2 = (fx_t(input[2]) - (fx_t)4.40589)/(fx_t)11.4831, 28 s_ax1_AXILiteS_RRESP,

31 input3 = (fx_t(input[3]) - (fx_t)4.24519)/(fx_t)11.2533; 29 s_axi_AXILiteS_BVALID,

32 input4 = (fx_t(input[4]) - (fx_t)4.30175)/(fx_t)11.2252; 30 s_axi_AXILiteS_BREADY,

33 inputs = (fx_t(inputl5]) - (fx_t)3.87414)/(fx_t)10.1781; 31 s_ax1_AXILiteS_BRESP,

34 inputé = (fx_t(inputl6]) - (fx_t)3.75959)/(fx_t)9.69367; 32 interrupt

35 input7 = (fx_t(input[7]) - (fx_t)3.84352)/(fx_t)9.66213; 33);

36 input8 = (fx_t(inputl[8]) - (fx_t)3.65047)/(fx_t)9.09565; 34 ,

37 input9 = (fx_t(input[9]) - (fx_t)5.96775)/(fx_t)11.3203; ;22222::: iﬁ‘g‘;ﬁﬁ‘ﬁ:iii; iy

;z ::i:c:fmde)() ¢ 37 parameter ap_ST_fsm_state3 = 23'd4;

40 return neuron@x32bacoo(); 38 parameter ap_ST_fsm_stated = 23'ds;

a1 default: 39 parameter ap_ST_fsm_state5 = 23'd16;

42 return (fx_t)e.; 40 parameter ap_ST_fsm_state6 = 23'd32;

43 } - 41 parameter ap_ST_fsm_state7 = 23'd64;

44 3} 42 parameter ap_ST_fsm_state8 = 23'd128;

45 . . . 43 parameter ap_ST_fsm_state9 = 23'd256;

o ermeontosod | Note: fixed point calculation || Spireceer i SR,

48 } RESEE SRRt 46 parameter ap_ST_fsm_statel2 = 23'd2048;

49 47 parameter ap_ST_fsm_statel3 = 23'd4096;

50- fx t neuron®x32bf19e() { 48 parameter ap_ST_fsm_stateld4 = 23'ds8192;

51 Teturn inputl; 49 parameter ap_ST_fsm_statel5 = 23'd16384;

52 } 50 parameter ap_ST_fsm_statel6 = 23'd32768;

53 51 parameter ap_ST_fsm_statel7 = 23'd65536;

54¢ fx t neurondx32bfade() { 52 parameter ap_ST_fsm_statel8 = 23'd131072;
- 53 parameter ap_ST_fsm_statel9 = 23'd262144;

S5 return input2; Thanks to Ben Raydo for help.

56 }

23'd524288;
23'd1048576;

54 parameter ap_ST_fsm_state20
55 parameter ap_ST_fsm_state2l

/T A4/7() — —




Xilinx vivado implementation

J,gﬁezon Lab
omas Jefferson National Accelerator Facility

Performance Estimates

-] Timing (ns)

- Summary

Clock Target E®jmated Uncertainty
ap_clk 4.00 3.466 0.50

-] Latency (clock cycles)

Latency Interval
min max minjmax Type
15 381 1% 381 none

Utilization Estimates

- Summary

Name BRAM_18K DSP48E FF LUT | URAM
DSP - 7 - - -
Expression - 40 40 8082 -
FIFO - - - - -
Instance 510 1415 142176 199915 -
Memory - - - - -
Multiplexer - - - 181 -
Register - - 2350 - -
Total 510 2144566 208178 0
Available 4320 84023644801182240 960
Available SLR 1440 788160 394080 320
Utilization (%) 1 6 17 0
Utilization SLR (%) 35 64 18 52 0

5/14/20 Sergey Furletoy e —




Test ML FPGA &

omas Jefferson National Accelerator Facility

C++ code for test:
XTrdann ann; // create an instance of ML core.

XTrdann ann;
int ret = XTrdann_Initialize(&ann, 0);

x1l_printf(" XTrdann_Initialize =%d \n\r", ret);

XTrdann_Start(&ann);
x1l_printf(" XTrdann_Started \n\r");

for (int 1 = 0; 1 <8 ; 1++ ) {

for (int k=0; k<10; k++)
params[kl=datal[1][k];
oute=datal[1][10];

ann_stat(&ann);

int offset=0;

int retw = XTrdann_Write_input_r_Words(&ann, offset, (u32*)&params[0], 10);
xil_printf("Set Input ret=%d \n\r", retw);

XTrdann_Set_index(&ann, 0);

XTrdann_Start(&ann);

while (!XTrdann_IsReady(&ann))
ann_stat(&ann);
ann_stat(&ann);

int hl=out®; int dl=(out0-h1l)*1000;

float *xout; // *x1in@®, *xinl, *xin2;
u32 1out = XTrdann_Get_return(&ann);
xout = (float*) &iout;
int whole = *xout;
int thousandths = (*xout - whole) * 1000;
if (whole==0 && thousandths<@)
x1l_printf("xout=-%d.%03d out0=%d.%03d\n\r", whole,-thousandths,hl,d1)
else
x1l_printf("xout=+%d.%03d out0=%d.%03d\n\r", whole, thousandths,hl,dl)

I

tf ("
tf (" 1r
//x11_printf(" 1n2=%d.%03d ",hin2,d1in2);

x1l_printf(" ev=%d out=%d.%03d out0=%d.%03d\n\r",1,whole,thousandths,hl,d1);

5/13/20 — - - Sergey Furletoy — e i




Optimization with hls4ml package

Je ‘ on Lab

jomas Jefferson National Accelerator Facility

A package hlsdml is developed based on High-Level Synthesis (HLS) to build machine learning

models in FPGAs.

Keras
TensorFlow

PyTorch

~

his 4 ml
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model
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conversion

Usual machine learning
software workflow
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article: J. Duarte et al 2018 JINST 13 P07027

Co-processing kernel

Custom firmware
design

tune configuration
precision
reuse/pipeline
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use 1 multiplier 4 times
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Song Han, thesis
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Conclusion Jefferfonlab

 ML-FPGA project just recently started.

* The initial goal is make a test setup

* The setup will be used to identify and optimize artificial neural network
algorithms and topologies, suitable for real time FPGA applications.

* It will also be used to perform beam tests in Hall-D with GEM-TRD and
calorimeter prototypes as PID detectors to estimate performance of ML
on FPGA in a real time environment.

e Test results could be used to calculate resource scaling for planned large
scale experiments (EIC, SOLID, etc).

* Results on performance and price could also serve as a feasibility study
on building a full scale ML-FPGA filter for current experiments such as
CLAS12 and/or GlueX.

* The ultimate goal is to build real-time event filter based on
physics signatures.

21
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Event Processing

——

The reconstruction of an event goes from the digital
signal of the individual sub-detector to a sequence of
particles, jets, and high-level features

09/10/19 Fast ML, ML at the LHC, J.-R. Vlimant 21
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Jgﬂ;gon Lab
omas Jefferson National Accelerator Facility

A Kalman Filter Muon Track-Finder has been written in HLS firmware for
the barrel region already for Run Il
Algorithm does track propagation and parameter updating

I G (AR S
A large amount of matrix math &. c od /| e, g ne™ +[R]

Solution: use DSP cores to reduce o = FRETHR] (- 7T s
FPGA resource utilization we ()= [(33% (%5)
. Qbs oo 1 /\% . B
- Programmable using HLS
Latency ~200 ns irex 7 sa0r o

To DAQ
»

Current BMTF —» Serialization
Data and emulator agreement is 99.7% i | p— < —
Parallel implementation in current
Phase-1 BMTF firmware

To DAQ
N KamanBMTF |» serialization ———»

I.Ojalvo Overview of Triggering Sep 10, 2019
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Readout electronics for GEM-T RJ;rﬁ:rgonLab
B The standard tracking GEM readout is usually based  wwp b o —
qon an APVZ25 chip and measures peak amplitude 3500
3000F
8 TRD needs information about ionization along the 2500

irack, to discriminate TR photons from energy loss of
the particle.

1000

bFor the TRD test we used a precise 125 MHz, 14 bit 50205
tlash ADC, developed at JLAB with VME readout.

3§oo;
o FADC readout window (pipeline) up to 8 us F
8Pre-amplifier has GAS-II ASIC chips, provides 2.6 oo

i V/fC amplification and has a peaking time of 10 ns. 1500
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NN input parameters distributigp

e on Lab

mas Jefferson National Accelerator Facility

Distribution of energy deposition in each of 10 time slices.

The last histogram represents the first time bin
after entrance window with the most soft TR
photons spectrum.
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Comparison Data with MC effedonLab

TR radiator scan
20

BCEM-TRD was tested with ~9cm radiator, and has

82Imm drift gap P |irmo..| Gas=20mm
870 understand how far the detector parameters % e 1 P
re from the optimal, two Monte Carlo scan were § 1t 4
erformed: iof /;
1. Fixed gas thickness at 20mm and radiator s
length varied from 5cm to 30cm of "
2. Fixed radiator length at 15cm and gas N // /
thickness varied from dmm to 30mm 2 Data

The data point was found in good agreement with . T PR S S PR
on fe Caf' /0 Radiator length, [cm]

Detektor thickness scan

OO

e e/n

From MC scans one can predict: _
= ele_no_rad adliator=15cm

Pions rejection factor
>

1. The current setup is able to separate e/n
with pion rejection factor of ~5.5 o
2. The detector gas thickness is optimal of e
3. With radiator length of 25cm e/m rejection < o
will be 16 for a single module. o
aF '/'//,.,,-——-’""\I .....

25
Gas thickness , [mm]
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P h yS i CS S i g n a t u re exa m p | e S %&Qﬂbg}c)cummhcum '
DVCS @ ZEUS - Strategy ‘
DVCS BH
. \/e y _TL/V\N\I e . y

v g™ g—— i
= Y
pz\l’ P, P P, P

two electromagnetic candidates (ordered in energy) and up to one track
BH must be removed [uncertainty on BH xsec ~ 3%]

S v sample: no tracks matching to the Signal sample
- — second candidate (DVCS+BH)
; \ . c sample: a track match to the Control sample
. (ol 2 second candidate BH+ dilepton + J/
J N : et ( P V)
“  Wrong-sign
sample:  a negative track match to the Control sample

1.5 < Q2< 100 GeV2
40 <W <170 GeV

01 OCT 2018 S. Fazio (BNL) 6
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XILINX.

https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf

RESULTS:

The data rate of the CMS detector is staggering
and what makes the trigger filtering problem such
a unique challenge. To overcome these challenges,
extremely low-latency inference times are produced
by the team’s machine learning algorithms running
on the Xilinx FPGAs. The data rates coming into
the CMS are measured in hundreds of terabytes/
second. The FPGAs receive and align sensor data,
perform tracking and clustering, machine learning
object identification, and trigger functions, before
formatting and delivery of event data.

CASE STUDY

Achieving 100ns Inference Latency on 150 Terabytes/Second Data Rates

“"Whether it's low-level aggregation
of hits in some calorimeter all the
way up to taking the full event and
optimizing for a particular topology.
It allows the spread and adoption
of machine learning more quickly
across the experiment.”
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