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Introduction

• With increase of luminosity for accelerator colliders as well as a granularity of detectors for particle physics, 
more challenges fall on the readout system and data transfer from detector front-end to computer farm and 
long term storage. 

• Modern (triggered) data acquisition systems (LHC, KEK, Fair) employ several stages for data reduction. 

• The CMS experiment at LHC has a Level 1 trigger that makes a  decision in ~4 μs and rejects 99.75% 
of events. 

• Their High Level Trigger (software), decision ~100 ms ,  rejects 99.9% of the data from Level 1. 

• Concepts of trigger-less readout and data streaming will produce  large data volumes being read from the 
detectors. Most of this will be uninteresting and ultimately discarded.

• From a resource standpoint, it makes much more sense to perform data pre-processing and reduction at 
early stages of data streaming.

• Our project mostly inspired by work carried out at CERN , and progress in ML application on FPGA

• At the LHC, data rates at the CMS  and ATLAS , are of the order of hundreds of terabytes per second. 
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Example from CMS 

Rejection is mostly defined by cross section of interesting physics processes.

• The task of the real-time processing is to filter 
events to reduce data rates to manageable 
levels for offline processing called triggering. 

• Level-1 typically uses custom 
hardware with ASICs or FPGAs.

• The second stage of triggering, 
High Level Trigger (HLT), uses 
commercial CPUs to process the 
filtered data in software.
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Motivation 

Fast Machine Learning,10-13 September 2019, Fermilab

• The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms 
for real time data processing. 

• Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for 
FPGA architectures.

Level 1 works with Regional 
and Sub-detector Trigger 
primitives .

Using ML on FPGA many tasks 
from Level 2 can be performed 
at Level 1
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ML on Xilinx FPGA

https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf

• While the large numerical processing capability of GPUs is attractive, these technologies are optimized 
for high throughput, not low latency. 

• FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency 
requirements that are unique to particle physics. 

• Machine learning methods are widely used and have proven to be very powerful in particle physics.

• However, exploration of the use of such techniques in low-latency FPGA hardware has only just begun. 
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EIC rates estimation

Jin Huang <jhuang@bnl.gov> YR kick-off meeting 

Belle II , 8 megapixels PXD 
produces ~200 Gbps

@ 30 kHz trigger rate. 

(beam background, noise 
and synchrotron)

Despite the fact that it is 
possible to record everything, 

it’s better to be able to filter or 

prescale events with a large 
cross section

Need a large computer farm 
to handle streaming data. In

terms of resources, it makes 

sense to perform data pre-
processing and reduction at 

the early stages of data 
streaming.
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ML-FPGA project

F. Barbosa, C. Dickover, Y. Furletova, D. Romanov. L. Belfore (ODU) 
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Physics signatures example

There are many physics signatures which could benefit from jet substructure and electron 
identification in real-time. 
In our project, we focus on the electron/hadron identification and on the classification of jets 
as either a quark (q) ) (light and heavy)  or gluon (g).
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ML FPGA  test setup

• To demonstrate the operating principle of the ML FPGA, we propose to use the existing setup of the 
ongoing EIC detector R&D project (eRD22) "GEM based Transition radiation detector (TRD) and tracker". 

• A small 10x10 cm GEM-TRD prototype and  fADC125 can generate up to 128 GB/s of raw data traffic.

• This detector, in addition to a track coordinate (μTPC mode), has capabilities of electron identification or 
electron/hadron separation, which is highly important for EIC physics. 

• For the GEM-TRD project we already use offline Machine Learning tools (JETNET, ROOT-based TMVA), 
and the results can be used for validation of the proposed implementation of FPGA-based neural 
networks .

• A FPGA-based Neural Network application would offer online particle identification and allow for data 
reduction based on physics at the early stage of data processing.

• Another important part of the project is evaluation of advantages of "global PID" compared to the 
standalone PID from each detector. To test the global PID performance we plan to integrate the EIC 
calorimeter prototype (3x3 modules) into the ML-FPGA  setup. 

• Preprocessed data from both detectors including decision on the particle type will be transferred to 
another ML-FPGA board with neural network for global PID decision. 

• Real beam testing is planned in Hall D, where there is already a test beam site that can be used for 
testing the prototype GEM-TRD, ECAL and Modular RICH detectors. 



GEM-TRD  prototype 
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• A test module was built at the University of Virginia
• The prototype of GEMTRD/T module has a size of 10 

cm × 10 cm with a corresponding to a total of 512 
channels for X/Y coordinates. 

• The readout is based on flash ADC system developed 
at JLAB (fADC125). 

• Still need to modify a FADC125 board with serial 
streaming interface (in progress).

• GEM-TRD provides e/hadron separation and tracking



Beam setup at JLab Hall-D
• Tests were carried out using electrons with an energy of 3-6 GeV, produced in the converter 

of a pair spectrometer.

• The electron energy is known from the pair spectrometer.

•The radiator is mounted in front of the GEM-TRD and covers about half of the sensitive 
area.

•We do not have hadron beam in this setup:

ü The effect of TR is evaluated by comparison of data from electrons with 
radiator and electrons without radiator.

5/13/20 12

Pair spectrometer

Photon
Beam

6-12 GeV

Electrons
3-6 GeV

e+

e-

Radiator

FDC
GEM-TRD

Beamline

H
A

LL
 -D

converter

Magnet



Machine learning in the data analysis

•For data analysis we used a fast artificial neural network classifier from root: 
MultiLayerPerceptron (MLP) 

•All data was divided into 2 samples: training and test samples
• Top right plot shows neural network output for single module:

Ø Red - electrons with radiator
Ø Blue – electrons without radiator
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Tracking with GEM-TRD
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track with !-electron

GEM-TRD can work as mini TPC, providing 3D track segments
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FPGA board for ML 
• At an early stage in this project, as hardware to test ML algorithms on FPGA , we use a standard Xilinx 

evaluation boards rather than developing a customized FPGA board. These boards have functions and 
interfaces sufficient for proof of principle of ML-FPGA. 

• The proposed Xilinx evaluation board includes the Xilinx XCVU9P and  6,840 DSP slices. Each includes a 
hardwired optimized multiply unit and collectively offers a peak theoretical performance in excess of 1 Tera 
multiplications per second.

• Second, the internal organization can be optimized to the specific computational problem. The internal data 
processing architecture can support deep computational pipelines offering high throughputs. 

• Third, the FPGA supports high speed I/O interfaces including  Ethernet and 180 high speed transceivers that 
can operate in excess of 30 Gbps.

Xilinx Virtex® UltraScale+™
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Creating ML FPGA Core
• Vivado High-Level Synthesis (HLS) transforms a C, C++, or SystemC design 

specification into Register Transfer Level (RTL) code for synthesis and 
implementation by the Vivado tools.

• Using HLS significantly  decreases development time. (at the cost of lower 
efficiency  of use of FPGA resources).

TRD
ML Core
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Xilinx HLS:  C++ to  Verilog

C++ Verilog

Note: fixed point calculation

Thanks to Ben Raydo for help.
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Xilinx  vivado implementation 
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Test ML FPGA
C++  code  for test :
XTrdann ann; //  create an instance  of  ML core. 
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Optimization with hls4ml package
• A  package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning 

models in FPGAs. 
article: J. Duarte et al 2018 JINST 13 P07027 
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Conclusion

• ML-FPGA project just recently started.
• The initial goal is make a test setup

• The setup will be used to identify and optimize artificial neural network 
algorithms and topologies, suitable for real time FPGA applications.

• It will also be used to perform beam tests in Hall-D with GEM-TRD and 
calorimeter prototypes as PID detectors to estimate performance of ML 
on FPGA in a real time environment. 

• Test results could be used to calculate resource scaling for planned large 
scale experiments (EIC, SOLID, etc). 

• Results on performance and price could also serve as a feasibility study 
on building a full scale ML-FPGA filter for current experiments such as 
CLAS12 and/or GlueX.

• The ultimate goal is to build  real-time event filter based on 
physics signatures.
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Backup
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Event processing
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Readout electronics for GEM–TRD 
•The standard tracking GEM readout is usually based 
on an APV25 chip and measures peak amplitude
•TRD needs information about ionization along the 
track, to discriminate TR photons from energy loss of 
the particle.
•For the TRD test we used a precise 125 MHz, 14 bit 
flash ADC, developed  at JLAB with VME readout.

o FADC readout window (pipeline) up to 8 !s
•Pre-amplifier has GAS-II ASIC chips, provides 2.6 
mV/fC amplification and has a peaking time of 10 ns.
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NN input parameters distribution
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The last histogram represents the first time bin 
after entrance window with the most soft TR 
photons spectrum.

Distribution of energy deposition in each of 10 time slices.



Comparison Data with MC 
•GEM-TRD was tested with ~9cm radiator, and has 
~21mm drift gap
•To understand how far the detector parameters 
are from the optimal, two Monte Carlo scan were 
performed:

1. Fixed gas thickness at 20mm and radiator 
length varied from 5cm to 30cm

2. Fixed radiator length at 15cm and gas 
thickness varied from 5mm to 30mm

• The data point was found in good agreement with 
Monte Carlo
• From  MC scans one can predict:

1. The current setup is able to separate e/!
with pion rejection factor of ~5.5

2. The detector gas thickness is optimal
3. With radiator length of 25cm e/! rejection 

will be 16 for a single module.
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Data

Radiator=15cm

Gas=20mm
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Physics signature examples
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https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf


