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• Problem statement and possible solutions
－ Hardware diversification
－ Parallelization
－ Streaming

• Micro-services architecture
－ Micro-service vs monolith 

• Flow based programming paradigm
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• CLARA: reactive data-stream processing framework
that implements micro-services architecture and FBP

• Summary 
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Problem we face 
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Experiment Conditions Event Rate Data	Rate Comments

Moller Production/	integrated	mode 1920Hz 130MB/s Can	be	handled	with	the	
traditional	DAQ.

EIC
L=1034 cm-2s-1 450-550Hz

Not	included	background	
noise	rates.

20-25GB/s
not	included	vertex	tracker	
that	will	generate	~240GB/s

~10Kz/µb,	track	multiplicity	=	
~5
JLAB	EIC	detector	design	will	
have	millions	of	channels.	Only	
non-vertex	detectors	
combined	will	have	~1M	
channels	plus	vertex	detector:	
estimated	20-50M	channels.	
In	total	~1000	ROC’s. Control	
nightmare	(starting	stopping	a	
run).	Streaming	readout	has	
less	control	requirements.

TIDIS rTPC hit	rates	enormous	
(~800KHz/pad)

4GB/s

How	to	match	up	
super Bigbyte detected	
electrons	with rTPC detected	
spectator	protons	is	a	big	
question.	Conventional	
triggered	DAQ	will	be	
challenged.

SoLID
30	sector	GEM 30GB/s

30	separate	DAQ’s	each	
1GB/s?	How	to	combine	GEM	
readout	with	other	
detectors? Handling	GEM	hits	
sharing	adjacent	sectors.

CLAS12 Phase	2 100KHz 5-7GB/s



CPU based architecture limitations
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MIPS/clock	speed	plateau

Squeezing	more	cores	per	
chip	becomes	difficult	

A Roadmap for HEP Software and Computing R&D for the 2020s. 
HEP Software Foundation, Feb. 2018 

“Frameworks face the challenge of handling the massive 
parallelism and heterogeneity that will be present in future 
computing facilities, including multi-core and many-core 
systems, GPUs, Tensor Processing Units (TPUs), and tiered 
memory systems, each integrated with storage and high-speed 
network interconnections.”



The Scale-Cube
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The	Art	of	Scalability.	by Martin	L.	Abbott and Michael	T.	Fisher.	ISBN-13: 978-0134032801
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Why decomposition into independent modules
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• Smaller	and	independent	code	bases.	Reinforce	a	maximum	
independence	and	isolation	of	functional	components.

• Fault	tolerant
• Overall	micro-services	based	application	evolves	much	faster
• No	other	dependencies	other	than	data	(loose	coupling)	can	

run	on	heterogeneous	hardware	and	software	infrastructures.
• Relatively	easy	evolution,	due	to

• Requirement	changes
• Environment	changes
• Errors	or	security	breaches
• New	equipment	added	or	removed
• Improvements	to	the	system

• Encourages	contribution	and	inclusion	of	new	technologies



Micro-services vs Monolithic architecture

Presentation Logic Data
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Pros
• Strong	coupling,	network	independent
• Full	control	of	your	application

Cons
• No	agility	for	isolating,	compartmentalizing	and	

decoupling	data	processing	functionalities,	suitable	
to	run	on	diverse	hardware/software	infrastructures

• No	agility	for	rapid	development	or	scalability

Pros
• Technology	independent	
• Fast	iterations
• Small	teams
• Fault	isolation
• Scalable

Cons
• Complexity	networking	(distributed	system)
• Requires	administration	and	real-time	orchestration		



FBP paradigm and reactive programming 
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S1 S2

• S1: Proactive,	responsible	for	change	in	S2
• S2:	Passive,	unaware	of	the	dependency

S1 S2

• S1: Broadcasts	it’s	own	result
• S2:	Subscribes	S1	change	events	and	changes	itself

Passive	programming

Reactive	programming
Enables	event	driven	stream	processing

Subscriber/ConsumerPublisher/Producer

t2 t0t1

Feedback	to	control	backpressure

Flow	based	programming	paradigm	assumes	reactive	programming



CLARA Framework

Reactive, data-stream processing 
framework that implements micro-
services architecture and FBP
• Provides service abstraction (data processing station)

to present user algorithm (engine) as an independent
service.

• Defines service communication channel (data-stream
pipe) outside of the user engine.

• Stream-unit level workflow management system and
API

• Defines streaming transient-data structure

• Supports C++, JAVA, Python languages
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http://claraweb.jlab.org

• CLARA: A Contemporary Approach to Physics Data Processing, 2011, J. Phys.: 
Conf. Ser. 331 032013 doi:10.1088/1742-6596/331/3/032013

• Development of A Clara Service for Neutron Reconstruction, 2011, APS: 
2011APS..DNP.EA024C

• Component Based Dataflow Processing Framework, 2015, IEEE DOI: 
10.1109/BigData.2015.7363971, ISBN: 978 1-4799-9926-2

• Earth Science Data Fusion with Event Building Approach, 2015, IEEE DOI: 
10.1109/BigData.2015.7363972, ISBN: 978 1-4799-9926-2

• CLARA: The CLAS12 Reconstruction and Analysis framework, 2016, J. Phys.: 
Conf. Ser. 762 012009 doi:10.1088/1742-6596/762/1/012009

Publications

• V.	Gyurjyan,	S.	Mancilla,	R.	Oyarzun,	S.	Paul,	A.	Rodrigues		
• Design:			2009
• Betta	release	and	first	application:	2010
• 3	master	theses

Authors	and	chronology

Rewards
Research	Opportunities	in	Space	and	Earth	Sciences	(ROSES)	2015
Funding for 3 years by the NASA's Earth Science Technology Office (ESTO)
and the Advanced Information Systems Technology (AIST) Program.
NAIADS Project ID: AIST-14-0014.
SRB Project ID:LARC-14-0014-2

Users
Documentation



Basic components and a user code interface
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Data Processing Station Data-Stream Pipe Orchestrator

Data Processing StationData processing Engine Data Processing Micro-Service

Engine	Tutorials
•https://claraweb.jlab.org/clara/docs/quickstart/java.html
•https://claraweb.jlab.org/clara/docs/quickstart/cpp.html
•https://claraweb.jlab.org/clara/docs/quickstart/python.html

Single Interface



Data Processing Station
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Multi-threading 

Configuration 

Communication

• 0MQ
• POSIX-SHM 
• In-memory Data Grid (IDG)

Runtime Environment

• C++
• JAVA
• Python

Language	Bindings

•https://github.com/JeffersonLab/clara-java.git
• https://github.com/JeffersonLab/clara-cpp.git
• https://github.com/JeffersonLab/clara-python.git
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CLAS12	Reconstruction	Application	Vertical	
Scaling

Node :	Intel	Xeon	E5-2697A	v4	@	2.6GHz
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Amdahl's	Law	Curve	Fit

P=0.995

configuration:	
io-services:				
writer:						
compression:	2		

services:				
MAGFIELDS:						
magfieldSolenoidMap:	Symm_solenoid_r601_phi1_z1201_13June2018.dat										
magfieldTorusMap:	Full_torus_r251_phi181_z251_08May2018.dat						
variation:	rga_fall2018			

DCHB:						
variation:	rga_fall2018						
dcGeometryVariation:	rga_fall2018						
dcT2DFunc:	"Polynomial"				

DCTB:						
variation:	rga_fall2018						
dcGeometryVariation:	rga_fall2018				

EC:						
variation:	rga_fall2018

mime-types:		- binary/data-hipo
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2020-05-08	11:48:30.940:	Benchmark	results:2020-05-08	11:48:30.941:
average	event	time	=				0.14	ms2020-05-08	11:48:30.943:			MAGFIELDS					2000	events				total	time	=					0.02	s				
average	event	time	=				0.01	ms2020-05-08	11:48:30.945:			FTCAL											 2000	events				total	time	=					0.26	s				
average	event	time	=				0.13	ms2020-05-08	11:48:30.946:			FTHODO			 2000	events				total	time	=					0.29	s				
average	event	time	=				0.15	ms2020-05-08	11:48:30.948:			FTEB												 2000	events				total	time	=					0.13	s				
average	event	time	=				0.06	ms2020-05-08	11:48:30.949:			DCHB									 2000	events				total	time	=		1126.76	s				
average	event	time	=		563.38	ms2020-05-08	11:48:30.951:			FTOFHB			 2000	events				total	time	=					3.93	s				
average	event	time	=				1.96	ms2020-05-08	11:48:30.952:			EC															 2000	events				total	time	=					1.87	s				
average	event	time	=				0.94	ms2020-05-08	11:48:30.953:			CVT														 2000	events				total	time	=			150.14	s				
average	event	time	=			75.07	ms2020-05-08	11:48:30.955:			CTOF													 2000	events				total	time	=					4.75	s				
average	event	time	=				2.37	ms2020-05-08	11:48:30.956:			CND														 2000	events				total	time	=					1.49	s				
average	event	time	=				0.74	ms2020-05-08	11:48:30.957:			BAND													 2000	events				total	time	=					0.02	s				
average	event	time	=				0.01	ms2020-05-08	11:48:30.959:			HTCC													 2000	events				total	time	=					0.11	s				
average	event	time	=				0.05	ms2020-05-08	11:48:30.960:			LTCC													 2000	events				total	time	=					0.05	s				
average	event	time	=				0.03	ms2020-05-08	11:48:30.961:			EBHB													 2000	events				total	time	=					1.60	s				
average	event	time	=				0.80	ms2020-05-08	11:48:30.963:			DCTB													 2000	events				total	time	=			988.61	s				
average	event	time	=		494.30	ms2020-05-08	11:48:30.964:			FTOFTB											2000	events				total	time	=					3.98	s				
average	event	time	=				1.99	ms2020-05-08	11:48:30.965:			EBTB													 2000	events				total	time	=					2.86	s				
average	event	time	=				1.43	ms2020-05-08	11:48:30.966:			RICH													 2000	events				total	time	=					2.15	s				
average	event	time	=				1.07	ms2020-05-08	11:48:30.967:			WRITER											 2000	events				total	time	=					7.09	s				
average	event	time	=				3.55	ms2020-05-08	11:48:30.968:			TOTAL												 2000	events				total	time	=		2296.38	s				
average	event	time	=	1148.19	ms



Data Stream Pipe
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Language	Bindings

•https://github.com/JeffersonLab/xmsg-java.git
• https://github.com/JeffersonLab/xmsg-cpp.git
• https://github.com/JeffersonLab/xmsg-python.git

OMQ / POSIX_SHM / IDG

Transient Stream Unit
Google ProtoBuf

• Meta-data
• Serialization
• Encryption



Workflow orchestrator
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Orchestrator

Hardware Optimizations

Service Registration/Discovery

Data-Set Handling 
and Distribution

Farm (batch or cloud) Interface

Application Deployment 
and Execution

Application Monitoring, 
Real-time Benchmarking

Command-Line Interface

Exception Logging and 
Reporting 



CLAS12 Data Processing Applications
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MAGF FCAL FTHODO FTEB DCHB FTOFHB EC CVT

EBTB FTOFTB DCTB EBHB LTCC HTCC BAND CND

CDG

Data	Q
uality	Assurance

Event	Reconstruction	Application

J/𝝍/𝑻𝑪𝑺 𝝅𝟎	, 𝒆 − 𝜸𝜸 𝑰𝒏𝒄𝒍𝒖𝒔𝒊𝒗𝒆	𝑯𝒂𝒅𝒓𝒐𝒏 𝑴𝒆𝒔𝒐𝒏𝑿/𝑽𝑺 𝒆 − 𝝅 + 𝑵 𝒆 − 𝑷 𝒑𝒑𝑿

Data	Provisioning

Physics	Analysis	Application

Data	Acquisition	System



Detector	reconstruction	services	(DRS)
• Cluster,	segment	finder
• Road	finder

Heterogeneous data-stream processing (LDRD-2018)
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Detector	1
Sector	1

SIS

SIS

SIS

SIS

VTP

Stream	interface	services	(SIS)
• Runs	on	FPGA
• 0	suppression
• Electronic	noise	removal

Flash	ADCs/TDCs

VXI	Crate

Detector	N
Sector		N

ERS	1

EP

DRS	X

DSTP

ERS	N

ANAS	1

ANAS	2

ANAS	N

Detector	reconstruction	services	(DRS)
• Full	detector	reconstruction
• Calibration,	alignment
• Kalman filter	
• Note:	some	DRS	services		might	run	on	GPGPU/TPU

Event	persistency
Raw	data

Some	detectors	might	need
other	detector’s	data	to	
complete	their	reconstruction.	

Event	reconstruction	services

DST	persistency
Reconstructed	data

Analysis	services

Note:	FPGA	based	CLARA	service’s	code	base	(C++)	will	be	deployed	in	CPU	first		for	
verification	and	quality	control,	and	only	after	will	be	deployed	into	FPGAs.
To	use	existing	hardware	in	a	streaming	mode	data	must	be	reduced	while	streaming.

DRS

DRS

SRS

Sector	reconstruction	services	(SRS)
• Geometry	matching
• Partial	software	trigger

SSP

EBS

EB	service	(GT)	or	CODA	(triggered)

VXS	
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Hall-B VTP Test-setup 2 

Clara Test Implementation

Hall B VTP Test 2
(emulates multi-stream system: stream/FADC)
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CSS

SRO10

CSS

CSS

CSS

CSS

CSS

CSS

CSS

CSS

CSS

CSA

CSA

CSA

CSP CER10Gb/sec

Stream	Source

Stream	Aggregator

Event	RecorderStream	Processor



Summary

• To address scientific data 3V expansion we need to design frameworks capable of 
leveraging data streams, as well as massive parallelism and heterogeneity of feature 
computing facilities.

• CLARA is a mature data stream processing framework that utilizes micro-services 
architecture and flow-based programming paradigm, currently in production-use at JLAB 
and NASA Langley.

• CLARA together with JANA are being tested on the Hall-B SRO test-setup 2 for 
evaluation, and setting up a foundation for an integrated data processing framework for 
future experiments at home and elsewhere.

17

Thank	you	



Backups

Talk Title Here 18



Structure
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FE

Service	Layer

Orchestration	Layer

Registration

DPE

SC SC

DPE

SC SC

DPE

SC SC

DPE

SC SC

gateway

security

Local	Registration Local	Registration

Local	Registration Local	Registration

Meta-Data Data

ZeroMQ(xMsg) in-Memory	Data-GridPOSIX	Shared	Memory	(FIPC)



Event Reconstruction Application (sub-event level parallelization)
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FCAL FTHODO FTEB

DCHB

FTOFTB

EC

CVT

EBTB

CTOFTB

DCTB
EBHB

LTCC

HTCC

RICH

CND

MAGF

FTOFHB



Heterogeneous deployment algorithm
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In-Process	SHM

Farm	Node

Java-DPE

In-Memory	Data-Grid

FTOF
DCHBc EC

C++-DPE

DCHBg
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𝑖𝑓	𝑃𝑔 < 𝑃𝑐	
route	data−stream	through	DCHBg



Data-quantum size and GPU occupancy
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In-Process	SHM

Farm	Node

Java-DPE

In-Memory	Data-Grid

FTOF EC

C++-DPE

DCHBg

	

set	data-quantum	size



Data-processing chain per NUMA
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In-Process	SHM

Farm	Node

Java-DPE

Start	DPE	pined	to	a	NUMA	socket.

In-Process	SHM

NUMA	1

Back	pressure	control

NUMA	0

Java-DPE



Results
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Rate	vs.	Threads	for	a	Single	NUMA	Socket
CLAS12	Reconstruction	Application:	v.	5.9.0,		Data	File:	clas_004013.hipo,	NUMA	0	

AMD	Rome Xeon	E5-2687A Xeon	Gold	6148
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• AMD	EPYC	7502	:		1.5MHz,	128/128,		NUMA-2
• Xeon	E-2687A:							2.6GHz,		32/32,						NUMA-2
• Xeon	Gold	6148:				2.4GHz,	40/40,							NUMA-4

NUMA	socket	physical	core	limit	
for	each	node
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CLAS12	Reconstruction	Application	Vertical	Scaling

Data	File	:	clas_005038.evio.00130.hipo
Node :	Intel	Xeon	E5-2697A	v4	@	2.6GHz
Clara								:	v	4.3.11
Plugin	1			:	coatjava-6.3.1
Plugin	2			:	grapes-2.1	
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CLAS12	Reconstruction	Application	Vertical	Scaling
Amdahl's	Law	Curve	Fit

Calculated	Speedup Amdahl's	Law	Speedup

Data	File	:	clas_005038.evio.00130.hipo
Node :	Intel	Xeon	E5-2697A	v4	@	2.6GHz
Clara								:	v	4.3.11
Plugin	1			:	coatjava-6.3.1
Plugin	2			:	grapes-2.1	

P=0.995

99.5%	parallel	efficiency	over	physical	cores


