THE CATHOLIC UNIVERSITY of AMERICA

The workplan for EIC ECAL @ JLAB

Vladimir V. Berdnikov (CUA)

In collaboration with: Tanja Horn, Ian Pegg, Marco Battaglieri, Alexander Somov, Fernando Barbosa, David Lawrence, Chris Stanislav, Fabrizio Ameli, Andrea Celentano, Josh Crafts, Bobby Bunton

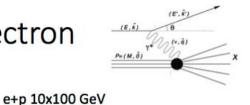
Streaming Readout VI Workshop; May 13 2020

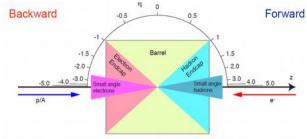
EIC Electromagnetic Calorimetry

Inclusive DIS: scattered electron

h-going

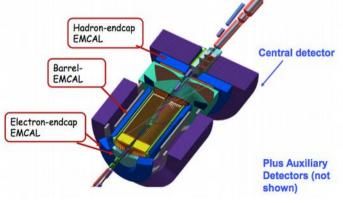
e+p 18x275 GeV


barrel


PHENIX exp 18 GeV v 27

PYTHIA DIS OZAL GO

e-going


(CeV) 30

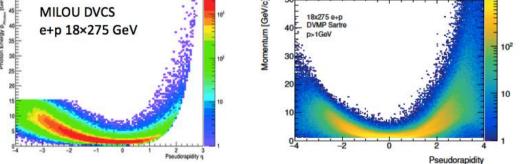
- Electrons mostly scattered in backward (e-going) and barrel
- Electrons energy varies from 0 to e-beam energy in backward
- Higher electron energies in barrel and forward (h-going) region
- Good resolution needed at η < -2

DVCS photon kinematics $J/\psi \rightarrow ee$ kinematics

Exclusive DIS: DVCS and DVMP

(GeV)

Ш 30


HENIX e+p 10 GeV × 100 Ge

barrel

h-going

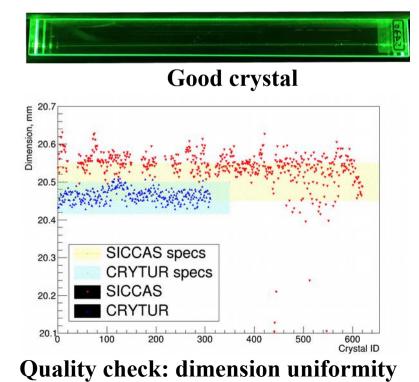
PYTHIA DIS OF 1 Ge

e-going

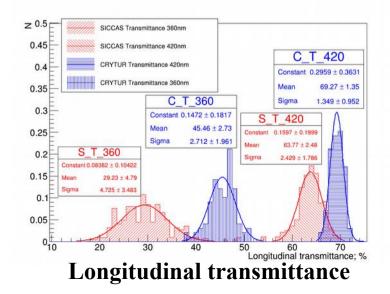
EIC White paper; EIC R&D Handbook; A. Bazilevsky talk Initial Considerations for the EMCal of the EIC detector

2

Electron endcap EmCal detector requirements

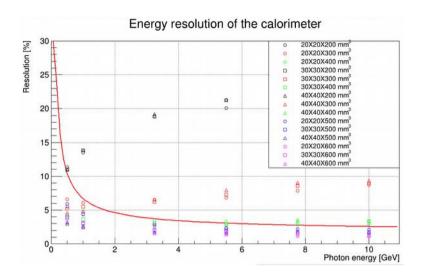

				Electrons						
η	Nomenclature		Resolution sE/E	Spatial resolution	Granularity	Minimum photon energy	PID			
-6.9 to -5.8			low-Q2 tagger							
-4.5 to -4.0		Auxiliary								
-4 0 to -3.5	↓ p/A	Detectors	Instrumentation						η ο	
-3.5 to -3.0									Backward -0.5 0.5	
-3.0 to -2.5				2%/VE+1%	3mm/√E+1mm	2x2 cm^2	50 MeV			
-2.5 to -2.0				2%/√E+1%	3mm/√E +1mm	2x2 cm^2	50 MeV		-1	
-2.0 to -1.5				7%/√E+1.5%	3mm(6mm)/√E +1mm	2.5x2.5(4x4) cm^2	100 MeV		-1.5 Barrel 1.5	
1.5 to -1.0			Backward Dete	7%/√E+1.5%	3mm(6mm)/√E +1mm	2.5x2.5(4x4) cm^2	100 MeV		-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0	
-1.0 to -0.5									-5.0 Small angle hadrons	4.0
-0.5 to 0.0									p/A	-
0.0 to 0.5									3676	
0.5 to 1.0			Barrel					π suppression u		
1.0 to 1.5										
1.5 to 2.0										
2.0 to 2.5										
2.5 to 3.0		Central								
3.0 to 3.5		Detector	Forward Detect							
3.5 to 4.0				nan an						
4.0 to 4.5				(10-12)%/VE+2%	3mm/√E +1mm	2.5x2.5 cm^2	100 MeV			
		Auxiliary	Neutron Detecti							
> 6.2	† e	Detectors	Proton Spectron							

- Homogeneous calorimetry with high resolution inner part and more relaxed requirements at larger angles (eRD1)
 - PWO crystals provide high resolution, radiation hard material and meet inner part requirements
 - Scintillating glass (DSB:Ce) provides a cost effective option in regions where resolution requirements are less stringent
- Benefits from synergies with other projects: Neutral Particle Spectrometer (NPS) and FCAL at JLab, PANDA
 - Resources, prototypes, software development

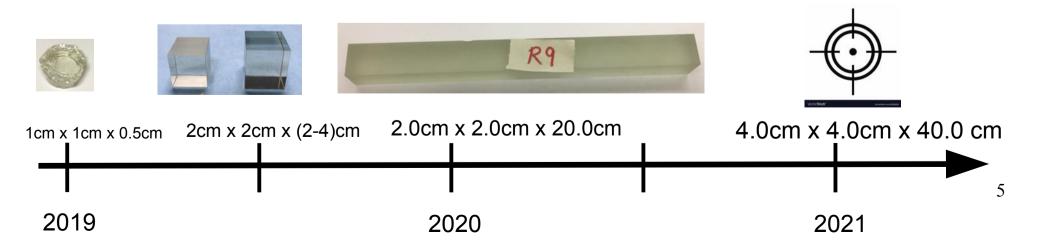

Electron endcap EmCal PbWO4 crystals

- Crystal dimensions 20.5x20.5x200 mm3
- Vendors exist, but only two vendors of PbWO4 crystals available worldwide
- Still some R&D related to raw crystal material powder
- SICCAS/China: failure rate ~30% of crystals produced in 2014-19 due to major mechanical defects
- CRYTUR/Czech Republic: Strict quality control procedures – so far 100% of crystals accepted

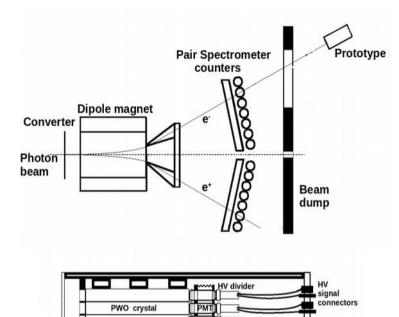
Bad crystal: bubbles in bulk, old labels ...

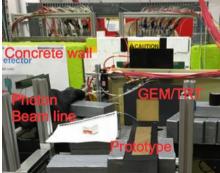

Electron endcap EmCal DSB:Ce glass

- Ongoing EIC R&D program (eRD1)
- Simulation suggests a resolution comparable to PbWO4


$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus \frac{2.7\%}{E} \oplus 1.5\%$$

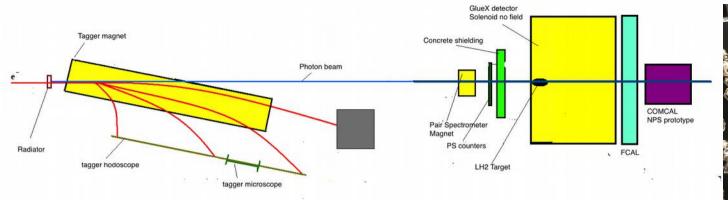
Assumes that 40cm long glass bars with these properties will be available


- Scintilex has developed the scale-up and can now fabricate 20cm long glass bars – further scale up optimization ongoing. Within one year achieved scale-up to 20cm and improving manufacturing. Goal: 40x40x400 cm3
- Ongoing preparation for beam tests: bars need to be polished (flatness, rectangularity etc.), quality assurance, testing with gamma sources, cosmic



EmCal 3x3 prototype measurements with Pair Spectrometer

- Crystal/glass beam test program in HallD:
 - Installed the 3x3 PMT based prototype behind the PS (2018,2019,2020)
 - Energy resolution measurement
 - Readout chain optimization
 - Glass-ceramic scintillator tests
 - SRO preferable option
- Crystal test stand 12 crystal measured at the same time (2020)
- Studies of crystal defects, light guides, cookies and etc.
- SRO optional



Nuclear Inst. and Methods in Physics Research, A 956 (2020) 16337 Contents lists available at ScienceDirect ALACLEAN A METHODA METHODA METHODA METHODA Nuclear Inst. and Methods in Physics Research, A Scintillating crystals for the Neutral Particle Spectrom eter in Hall C at the form of the second se journal homepage: www.elsevier.com/locate/nin

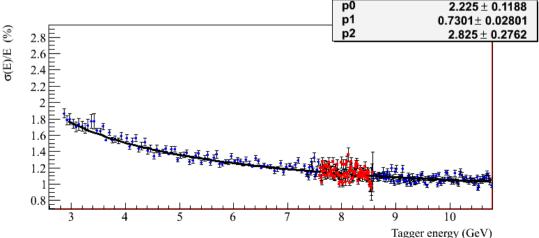
3x3 Prototype

FRAME

Additional SRO opportunities with 12x12 prototype

- 12x12 ch PMT based detector for more detailed studies compared to quick checks with the 3x3 prototype
 - Allows for studies of energy resolution in wide energy range, stability, rate dependence, etc.
 - But, not as flexible as 3x3 since cannot run in parasitic mode and has to be installed in the beamline - requires scheduling, crane installation, alignment, slow controls, integration to data stream...
- Beam test program completed in 2019
 - Initial results show energy resolution:
 ~2.83%/E+2.23%/√E+0.73%
 - Ongoing studies to improve linearity
 - Preparing publication on beam test results

 to be submitted to NIMA in next few months


Detector design major components:

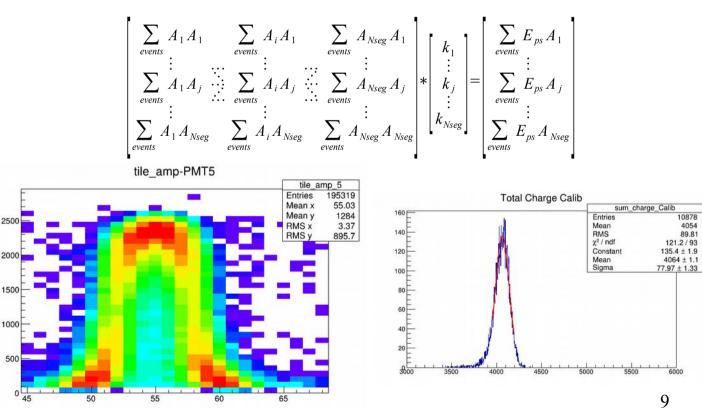
- 12x12 Matrix (140 crystals)
- NPS HV divider
- 250 fADC readout
 - Environment control:
 - Temperature, humidity, light sensors

2 prototype

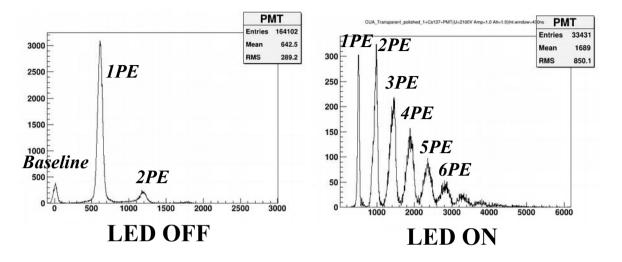
7

- Monitoring system consisting of LED and α -source
- Moving platform

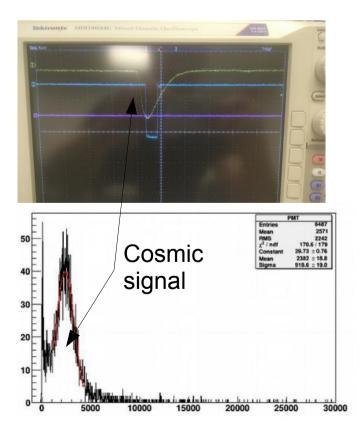
EmCal 3x3 prototype tests 2020 plan with SRO

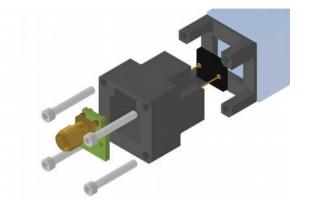

- Instrument two 3x3 SiPM and PMT based prototypes to test scintillator materials and test/optimize the entire readout: preamps, fADC and streaming DAQ system
 - Establish baseline performance with PMT based PWO prototype and standard RO
 - Planned tests in HallD will have up to 8 configurations
 - PWO proto-PMT + fADC250+VTP
 - PWO proto-PMT + WB
 - PWO proto-SiPM+BIAS board/Preamp+fADC250+VTP
 - PWO proto-SiPM+WB
 - Glass proto-PMT + fADC250+VTP
 - Glass proto-PMT + WB
 - Glass proto-SiPM+BIAS board/Preamp+fADC250+VTP
 - Glass proto-SiPM+WB

Baseline measurements with PMT based 3x3 prototype



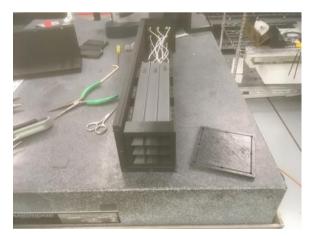
- Baseline measurement with 3x3 PMT based PWO prototype
- Prototype installed, surveyed and aligned
- HV connected, tested (remote control)
- FADC250 RO channels, PS trigger bit
- Readout with GlueX data stream (parasitic)
- Energy resolution ~1.9% for ~4GeV lepton
- Calibration made by regression algorithm


SiPM and SiPM+PWO performance tests in the darkbox

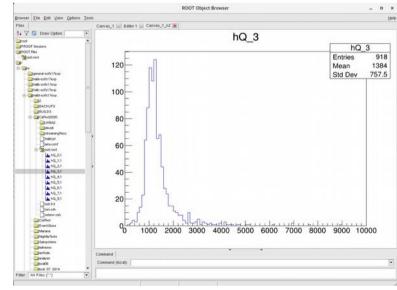

- 25um and 75um 6x6 mm² SiPM Hamamatsu S13360
- Performed tests with LED ON/OFF
- BiAS board + Preamp board
- FADC250 self trigger, threshold level under baseline
- CODA based DAQ

- Cosmic tests
- BiAS board + Preamp board
- FADC250, trigger coincidence between two plastic scintillator pads with SiPM readout
- CODA based DAQ
- ~50Photoelectrons for ~15MeV energy deposit mean ~3.3 PE/MeV

SiPM based 3x3 PWO prototype assembly



- Improved prototype with new SiPM based assembly
- Same size 3D printed frame as PMT based version
- Two peace SiPM holder concept developed
- Holders are 3D printed (PLA plastic)
- PEEK plastic will be used in real detector
- Silicon based glue for frame, no SiPM glueing to crystal
- SiPM soldered to circuit board with SMA connector
- 25um cell SiPM for beam tests installed (75um second option)
- LEMO output at the detector patch panel (BIAS/Preamp or Waveboard application)
- Assembled and sanity checked
- Ready for beam tests



SiPM prototype tests with Waveboard in INDRA lab

- Prototype moved to INDRA lab and connected to Waveboard, interaction via INDRAlab machine
- The parameters for Waveboard set to perform cosmic measurements (HV calibrated, gain value, thresholds and etc.)
- First quick tests, data streamed to host machine, pulses make sense, analyzed via DbgParser code
- Full readout chain tested SiPM+Waveboard+TRIDAS, data analyzed via JANA-2+SRO plugin
- Calorimeter calibration is ongoing
- Full Readout chain+analyzer is working

0 _× 00	0x00	9	0x020900C3	0	0x10CC	0×1000	0x000F	0×0008	0×0000	0x0007
0x00	0x00	10	0x0201505A	0	0×0000	0x0000	0x0000	0×0000	0×0000	0×0007
0x00	0x00	11	0x020B34E9	0	0×0000	0x0000	0×0000	0x0000	0x0000	0×0007
rootBav	/b_daq_a:	xls:~¶ .	/ReadParam							
CRATE#	SLOT#	CHAN⊯	PEDESTAL*4096	RATE MON (Hz)	START THR	STOP THR	LEAD LENGTH	TAIL LENGTH	CONTROL	STATUS
0×00	0x00	0	0×010E75BA	700	0×10CA	0×10CA	0x000F	0x0008	0x000A	0×0004
0x00	0x00	1	0x020B4B7D	0	0×10CC	0x10CC	0×000F	0×0008	0x000A	0×0007
0x00	0x00	2	0×02101660	0	0x10CC	0×10CC	0x000F	0×0008	0x000A	0x0007
0×00	0×00	3	0x02097806	Û	0×10CC	0x10CC	0×000F	0×0008	0×000A	0×0007
0x00	0x00	4	0x020AD5B4	0	0x10CC	0×10CC	0×000F	0×0008	0×000A	0×0007
0x00	0x00	5	0x0208EFF6	0	0x10CC	0x10CC	0×000F	0×0003	0×000A	0×0007
0x00	0x00	6	0x020B8D01	0	0×10CC	0x10CC	0×000F	0×0008	0×000A	0×0007
0x00	0x00	7	0x020E83D2	0	0x10CC	0×10CC	0x000F	0×0008	0x000A	0x0007
0x00	0x00	8	0x020BE940	0	0x10CC	0x10CC	0×000F	0×0008	0×000A	0×0007
0x00	0x00	9	0x02098038	0	0×10CC	0×10CC	0x000F	0×0008	0x0000	0×0007
0×00	0x00	10	0x02015726	0	0×0000	0x0000	0×0000	0x0000	0×0000	0×0007
0x00	0×00	11	0x0208295F	0	0x0000	0×0000	0x0000	0×0000	0×0000	0x0007
rootew	/b_daq_a	xis:~" []							

Summary

- Beam test with prototypes crucial for EIC EmCal development
- Crystal/glass material performance beam test method with PS in HallD established
- Good opportunities for testing SRO with different calorimeter prototype versions
- SiPM and PMT based prototypes assembled
- Baseline for PMT based PWO prototype performance have determined
- Full streaming readout chain tested
- Ready for the beam tests and streaming