TIGER ASIC for GEM Readout

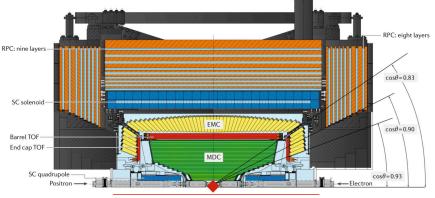
Streaming Readout VI May 13-15, 2020

Istituto Nazionale di Fisica Nucleare

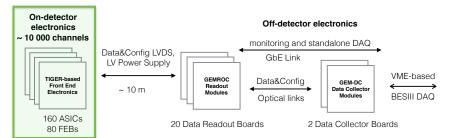
Manuel Da Rocha Rolo

The BESIIICGEM project has been funded by European Commission within the calls H2O2O-

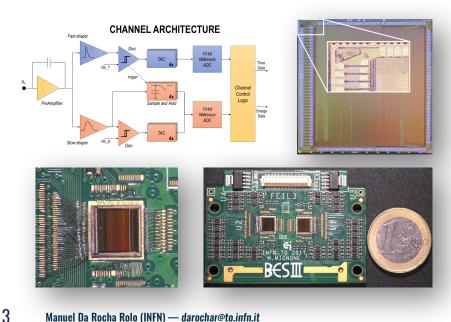
MSCA-RISE-2014 and FEST RISE-MSCA-H2020-2020



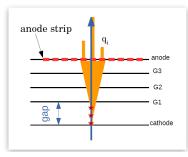
The BESIII Experiment at BEPCII


The BESIII experiment @ BEPCII (Beijing Electron-Positron Collider) - operation since 1989, upgrade to BEPCII in 2008
 BESIII Collaboration counts ~500 authors from 67 Institutions, 14 Countries

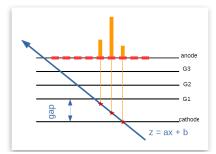
Parameters	BEPCII
Center of mass Energy	$(2.0 \div 4.6) \text{ GeV}$
Peak luminosity at 2×1.89 GeV	$\sim 10^{33} {\rm ~cm^{-2} s^{-1}}$
Circumference	237.5 m
Number of rings	2
RF frequency	499.8 MHz
Number of bunches	2×93
Beam current	$2 \times 0.91 \text{ A}$
Bunch spacing	$2.4/8 \text{ m}\mathrm{ns}^{-1}$
Bunch length (σ_z)	1.5 cm
Bunch width (σ_x)	$\sim 380 \ \mu { m m}$
Bunch height (σ_y)	$\sim 5.7~\mu{\rm m}$



- new lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector for the upgrade of the BESIII spectrometer
- analogue readout of the CGEM enables the use of charge centroid and µ-TPC algorithms to improve the spatial resolution
- 10 000 channels are readout by 160 dedicated 64-channel front-end ASICs


Upgrade of the BESIII Inner Tracker

- Spatial resolution: σ_{xv} = 130 μ m , σ_z = 300 μ m ٠
- Momentum resolution: $\sigma_{nt}/p_{t} = 0.5\%$ @ 1 GeV/c ٠
- Efficiency = 98% •
- Material budget \leq 1.5% of X₀ for all layers •
- Rate capability: ~10⁴ Hz/cm²
- Coverage: 93% 4π



Reconstruction algorithms

Weighted average of strip positions by collected charge μ-TPC readout

2D track reconstruction exploiting time of arrival and drift velocity

TIGER ASIC for the CGEM-IT Readout

- provides an analogue readout (time and charge information) for CC and μ -TPC algorithms
- 64-channel Application Specific Integrated Circuit

TIGER ASIC for the BESIII CGEM-IT

- TIGER has been designed for the readout of the CGEM-IT (Cylindrical Gas Electron Multiplier Inner Tracker)
 - new inner tracker of BESIII Experiment
 - 10 000 channels readout by 160 64-channel TIGER ASICs
- Time and charge measurements with fully-digital output
 - Charge centroid and µ-TPC algorithms
 - 130 µm spatial resolution with strip pitch of 650
- Sensor capacitance dependent on strips length, u
- Input charge: 2 50 fC
- Time resolution for µTPC mode: 5 ns
- Rate per channel: 60 kHz (4x safety factor)
- Power consumption: < 12 mW/ch
- SEU-tolerant

0 µm	σ_{z}	300 µm
ıp to 100 pF	σ_{pt}/p_t	0.5% at 1 Ge
	Coverage	93% 4π
	Material budget	< 1.5 X ₀
	Inner radius	78 mm
	Outer radius	178 mm
	Magnetic field	1 T

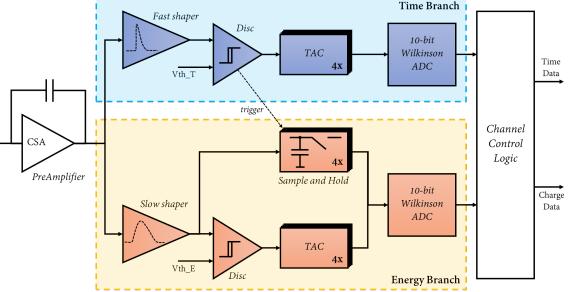
Efficiency

Rate capability

 $\sigma_{r\Phi}$

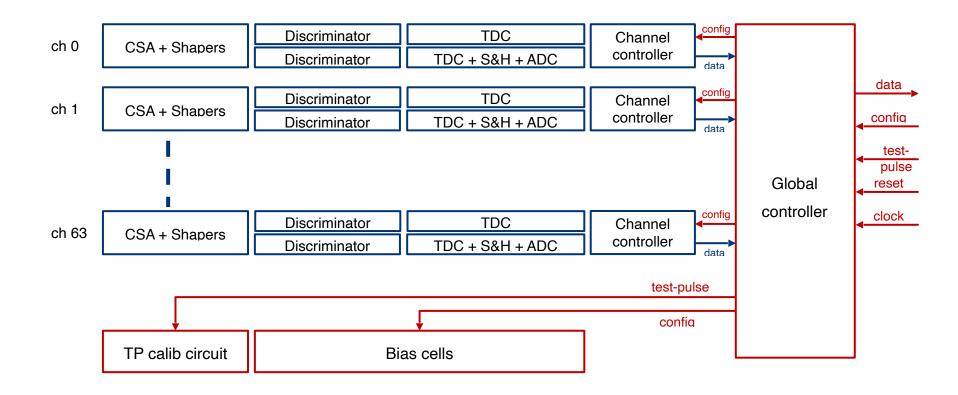
98%

 10 kHz/cm^2

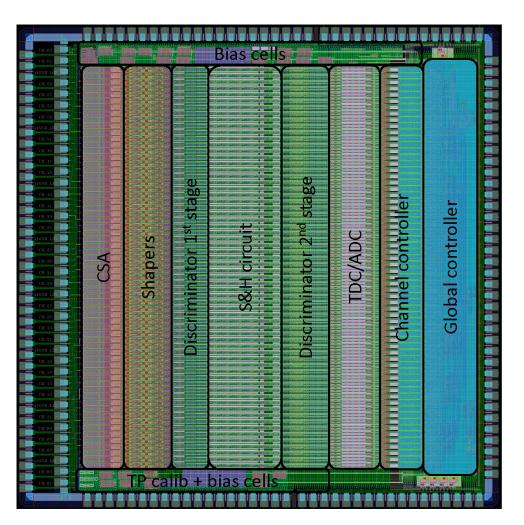

130 µm

at 1 GeV/c

Channel Architecture


- Analogue Front-End:
 - Charge Sensitive Amplifier
 - dual-branch shaper optimized for time and charge measurements
- Trigger-less readout architecture:
 - 2 LE discriminators with 6-bit DAC for threshold equalization
 - dual-threshold readout mode
- Timestamp on rising edge of fast branch
 - Time resolution < 5 ns
 - Low-power TDCs based on analogue interpolation
- Charge measurement:
 - ToT: timestamp on rising/falling edge
 - S/H: slow shaper output sampled and digitized with a 10-bit Wilkinson ADC

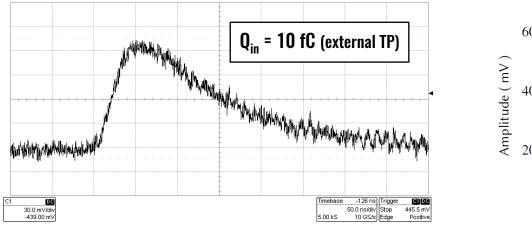
ASIC Architecture

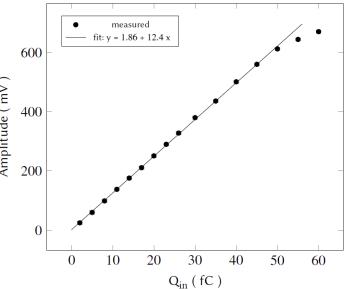

• The ASIC embeds an array of 64 channels (amplifier, discriminator, TDC/ADC), a digital global controller, bias and references generators and a test-pulse calibration circuit.

Chip Floorplan

- 5 x 5 mm² 110nm CMOS technology
- Digital backend adapted from TOFPET2* (SEU protected)
- 64 channels: CSA, shapers, TDC/ADC, local controller
- On-chip bias and power management
- On-chip calibration circuitry
- Trigger-less operation, fully digital output
- 160-200 MHz system clock
- 4 TX SDR/DDR LVDS links, 8B/10B encoding
- 10 MHz SPI-like configuration link
- Power consumption < 12 mW/ch
- Sustained event rate > 100 kHz/ch

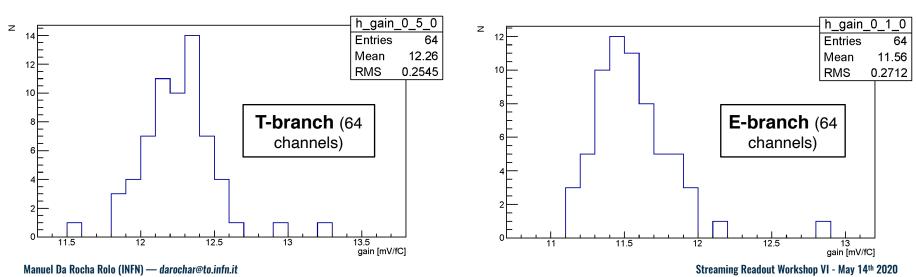
Chip Test Board


Test-board for ASIC electrical characterization


- Trimming capability for analogue and digital power domains and external reference voltages
- Debug IO ports:
 - 2. External test-pulse injection
 - 3. External capacitor insertion
 - 4. T-branch shaper output and threshold probe points (ch. 63)
 - 5. Digital back-end control signals (TDC and S&H)

Electrical Characterization Front-end response and linearity

Peaking time ≈ 60 ns


Gain ≈ 12.4 mV/fC

Electrical Characterization Threshold scan and gain dispersion

- 1. V_{th} scan to generate LUT and equalize thresholds
 - \succ below 5 mV RMS dispersion after V_{th} equalization
- 2. V_{th} scan with internal TP to measure gain of 64 channels on both branches

2. Gain dispersion

10

z ⁵⁰

45

40

35

30

25F

20

15

10

260

280

300

340

320

360

380

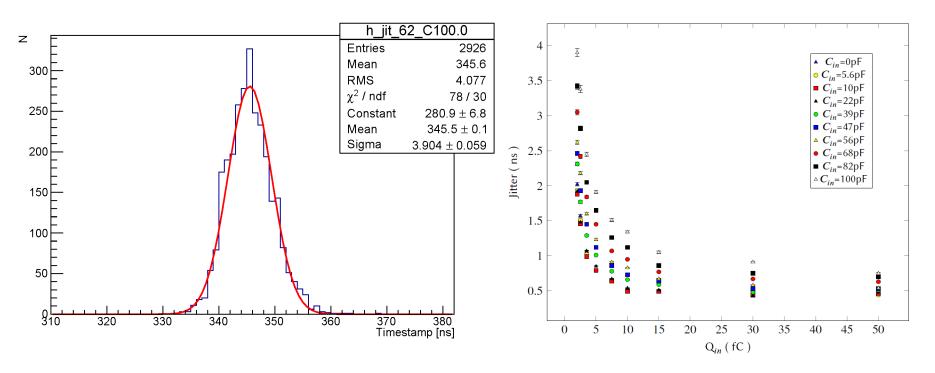
baseline [mV]

1. Threshold

Equalization

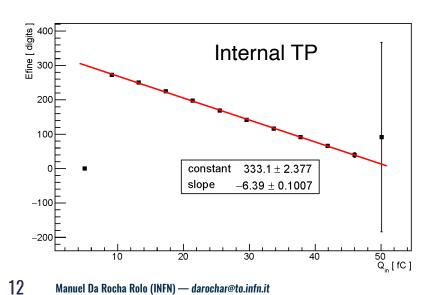
before equalization

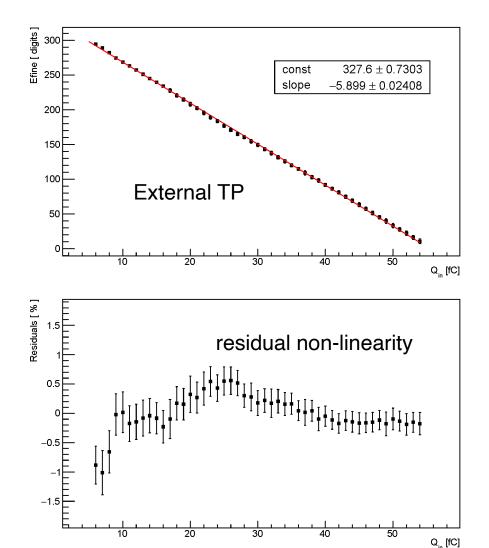
after equalization



Electrical Characterization Timing Resolution

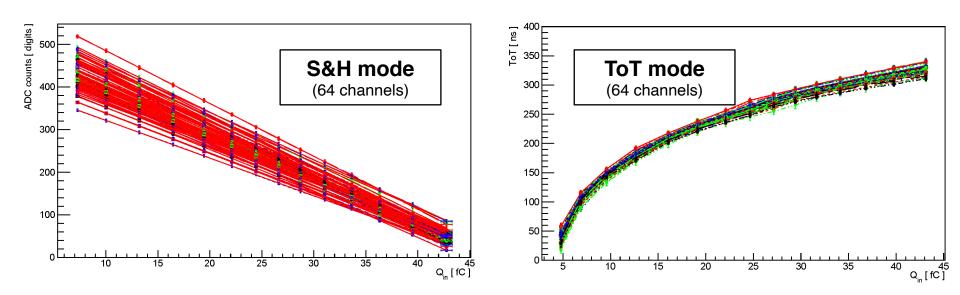
- TP injected to VFE, generated by on-chip calibration circuit
- Here, fixed amplitude and time skew in respect to system clock


• Jitter vs. Qin vs. Cin



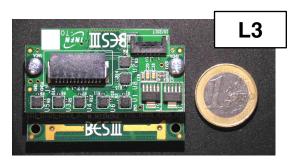
Electrical Characterization Charge Measurement

- S/H dynamic range and linearity with external test-pulse generator (ch. 63 input debug port)
- Back-annotation for internal test pulse calibration to assess all channels



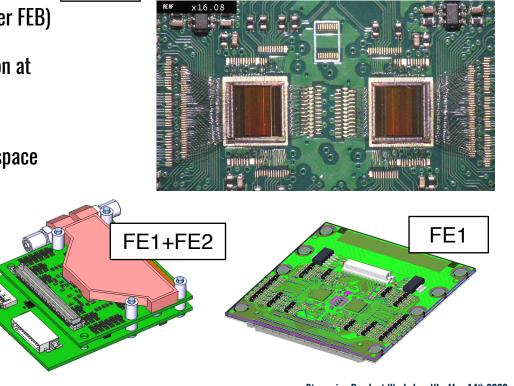
Streaming Readout Workshop VI - May 14th 2020

Electrical Characterization Charge Measurement



- Linear response from S&H circuit easy to calibrate
- S&H limited by saturation of FE and ADC above 50 fC
- ToT response intrinsically not linear with CR-RC shapers
- ToT provides moderate energy resolution at low Qin, allows for extended dynamic range

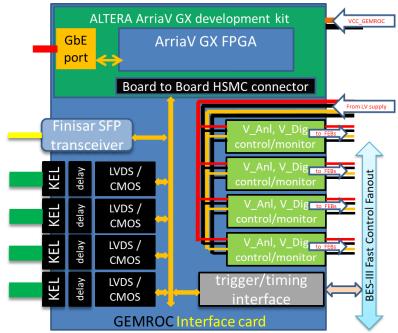
FEB (Front-End Board)


Front-End Board (FEB) for the on-detector CGEM electronics

- Stack of two printed circuit boards:
 - FE1: analogue-most layer
 - FE2: digital layer \succ
- 2 TIGER ASICs mounted on FE1 (128 channels per FEB)
- Water-cooling heat exchanger plate for operation at ۲ controlled temperature
- Different layout and routing for L3 FEBs due to space constraints inside BESIII

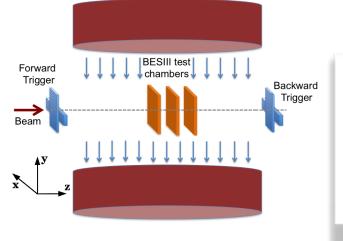
FE1

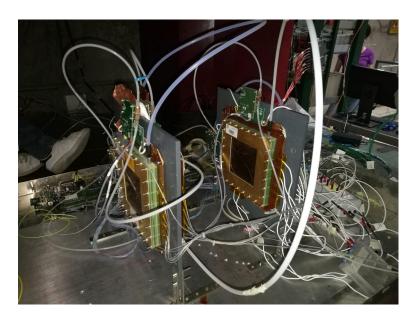
INFN TORINO


L1-L2

FE2

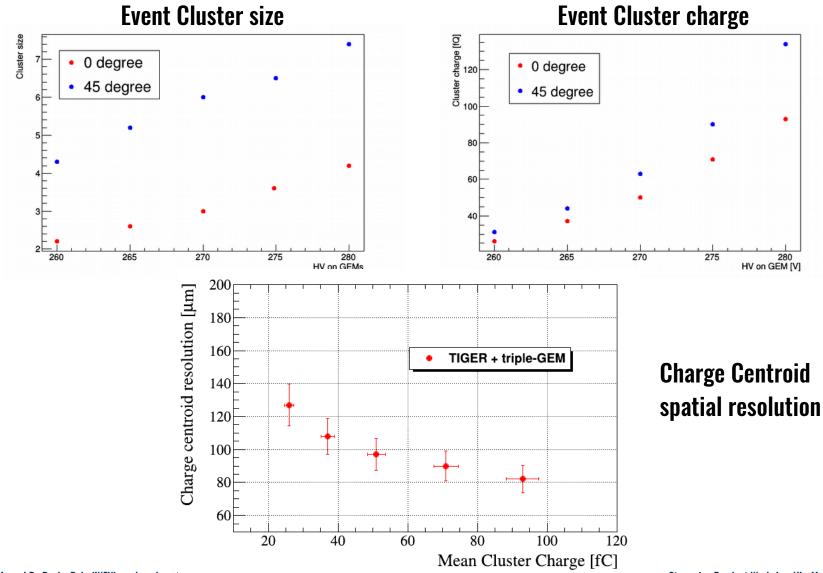
GEMROC (GEM ReadOut Card)



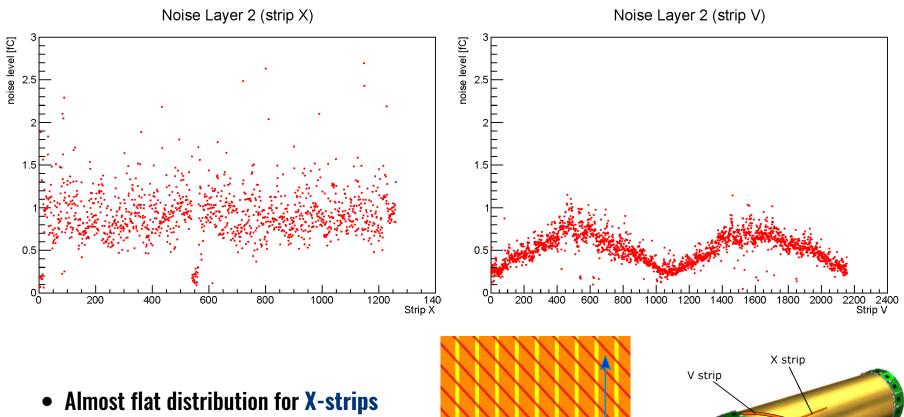

- Developed by INFN Ferrara
- Off-detector electronics for the readout of the CGEM-IT detector (160 TIGER)
- Provides power, configuration and data interface to the TIGER ASICs (up to 8 TIGER for each GEMROC)
- Trigger-Matching operations (trigger-less mode also available)

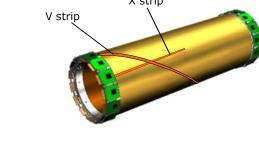
Beam tests with planar GEMs

- 2 beam tests to validate the ASIC with the sensor:
 - 10 x 10 cm² planar GEMs
 - XY orthogonal strips
 - Turin FPGA-based DAQ -> readout of 8 TIGER
- Nov 2017: Mainz Microtron (TIGER prototype version)
- Apr 2018: CERN H4 beam line (TIGER final version)



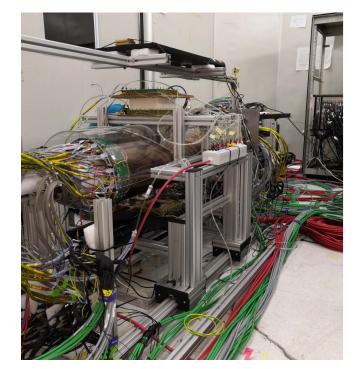
Trigger-less readout: trigger from scintillator bars injected as a digital test-pulse on one TIGER channel to be used as a reference for offline trigger-matching

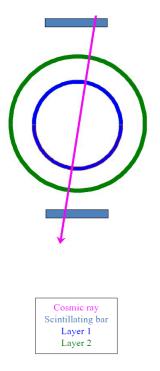

Beam tests with planar GEMs



Noise measurements on CGEM

V-strips noise follows the strips length


strips strips


Х

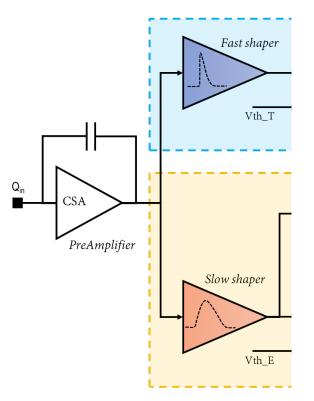
CGEM-IT commissioning and tests

Two out of three layers of the CGEM-IT detector are assembled together and cosmic rays acquisitions are now ongoing at IHEP (Beijing, China)

- 88 TIGER ASICs readout by 11 GEMROC modules (>5000 electronics channels instrumented)
- GUFI (Graphical User Front-end Interface) software provides DAQ control tools for:
 - Trigger-matched cosmic acquisition
 - Trigger-less operation for periodic maintenance

R. Farinelli, "Preliminary results from the cosmic data taking of the BESIII cylindrical GEM detectors", talk at INSTR-20, Novosibirsk, Russia

Thanks for your attention.


Istituto Nazionale di Fisica Nucleare

Manuel Da Rocha Rolo INFN Torino

The BESIIICGEM project has been funded by European Commission within the calls H2020-MSCA-RISE-2014 and FEST RISE-MSCA-H2020-2020

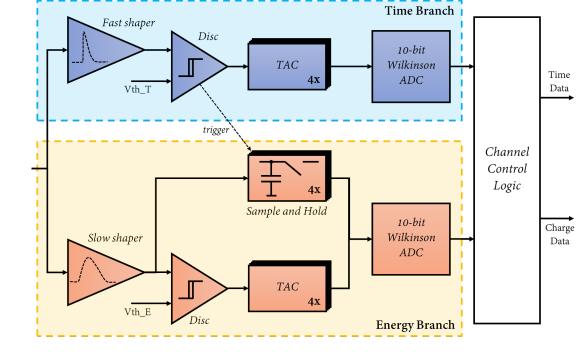
Analog Front-End

1. CSA pre-amplifier

- Q_{in} = 2 50 fC
- input transistor bias current set by 6-bit DAC (1.5 4.5 mA)
- ENC target < 2000 e⁻ @ C_{in} = 100 pF

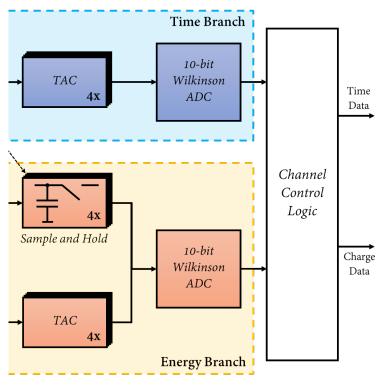
2. Time-branch

- Simple CR-RC shaper
- 60 ns peaking time for low-jitter timing measurement


3. Energy-branch

- 4 complex-conjugate poles shaper for a more gaussian signal shape to reduce pile-up probability
- 170 ns peaking time for signal-to-noise ratio optimization
- BLH to lock the shapers output DC to an external reference value (V_{BL} = 350 mV)
- ≻ Total gain ≈ 12 mV/fC

Trigerless Readout


- LE discriminators with 6-bit DAC programmable thresholds and 3-bit DAC hysteresis
- Data-push readout architecture: each signal above the selected threshold is taken as a good event, digitized and sent off-chip (no external trigger)

Time and Charge Measurement

- Coarse time measurement from the chip master clock counter
- Fine time measurement with low-power analogue TDCs based on time interpolation (I.F. = 128)
 - 50 ps time binning @ 160 MHz
 - Quad-buffered TACs for event de-randomization
 - TAC buffers with refresh scheme to avoid off-chip correction algorithm for leakage
- Charge measurement with S/H circuit sampling the E-branch shaper output
 - Programmable sampling time targeting the signal peak
 - Digitization with Wilkinson ADC shared with the TDC
 - Quad-buffered sampling capacitors for event de-randomization
- Charge measurement from ToT information by operating both branches in TDC mode (backup solution)

