Exploring the soft-hard transition in forward and backward meson production

C. Weiss (JLab), Backward Angle u-Channel Physics Workshop, 21-Sep-2020

High-energy meson production

Forward and backward regions

Exchange mechanisms

Soft-hard transition in Q^2

Forward production

Soft: Pomeron/Reggeon exchange

Hard: Small-size $gg/q\bar{q}$ exchange, pQCD, GPDs

Vacuum and non-vacuum channels

Backward production

Soft: Baryon Regge exchange, status, questions

Hard: Small-size qqq exchange, pQCD, TDAs

Measurements needed

Meson production: Forward and backward regions 2

High-energy meson production

Projectile $+ N \rightarrow M + N'$

Above resonance region $s \gg s_{\rm res} \sim {\sf few} \; {\sf GeV}^2$

Projectile: Meson, γ , $\gamma^*(Q^2)$

Forward and backward regions

Forward: $|t| \lesssim 1 \text{ GeV}^2$, $|u| \sim s$

Backward: $|u| \lesssim 1 \text{ GeV}^2$, $|t| \sim s$

Exchange mechanisms

Formal: $s \to \infty$ asymptotics governed by singularities in t,u

Dynamical: Hadrons, QCD DoF

Characteristics: Quantum numbers, Q^2 dependence in electroproduction \leftarrow

Forward production: Soft and hard regime

Reggeon

• Soft: Photo/electroproduction at $Q^2 \lesssim R_{\rm had}^{-2} \ (\sim M_{\rho}^2)$

Transverse range of interaction \sim hadronic size $R_{\rm had}$

Exchange: Regge trajectories

Vacuum quantum numbers: Pomeron, Reggeons

Non-vacuum: Reggeons

Features: $s \leftrightarrow t$ dependence, universality of trajectories

• Hard: Electroproduction at $Q^2 \gg R_{\rm had}^{-2}$ or heavy meson

Transverse range of interaction $\ll R_{\rm had}$

QCD factorization for γ_L^* ; for γ_T^* with modifications Collins, Frankfurt, Strikman 96

Exchange: $gg,qar{q}$ with tranverse size $\ll R_{
m had}$

Coupling to nucleon: GPD

Features: Q^2 scaling; s and t dep changing with Q^2 (evolution), universality of GPDs

Forward production: Soft-hard transition

ullet Study transition from soft to hard regime as function of Q^2

Focus on model-independent features of each regime: s-dependence; interplay of s and t dependences; universality

Interest

QCD factorization is asymptotic approximation: Need to quantify region of applicability, magnitude of sub-asymptotic corrections. *Essential for processes in JLab12 kinematics*.

Soft dynamics can guide modeling of GPDs: "Initial condition" of Q^2 evolution

Soft dynamics as object of study: "Emergence" of Regge dynamics from QCD

New possibility provided by electroproduction: Progress beyond study of photoand hadroproduction, complementarity

Strategy

Review results in forward vacuum exchange processes HERA

Consider extension to forward non-vacuum exchange and backward processes JLab12, EIC

Forward production: Vacuum exchange

Vacuum exchange channels measured at HERA

$$M=
ho^0,\phi,J/\psi,\Upsilon,\gamma$$

$$W=$$
 30–200 (300) GeV, $Q^2=$ 0–30 GeV 2

Soft regime: Pomeron exchange

Well established, numerous tests

$$ho^0, \phi$$
 at $Q^2=0$

Hard regime: GPD-based description

Gluon GPD, QCD evolution, effective scale, finite $q\bar{q}$ size Successful phenomenology, quantitative predictions Frankfurt, Strikman, Koepf 96; Goloskokov, Kroll 08; Anikin, Ivanov, Pire, Szymanowski, Wallon 10. See also: Belitsky Müller 01; Ivanov, Szymanowski, Krasnkiov 04

$$ho^0, \phi$$
 for $Q^2 \gtrsim 10~{
m GeV}^2$; $J/\psi, \Upsilon$ any Q^2

Soft-hard transition: Extensive studies

W (GeV)

HERA data. Compilation by A. Levy, arXiv:0711.0737

ullet W dependence of exclusive cross sections Fit $\sigma \propto W^{\delta}, \; \delta = \delta(Q^2)$

Soft expectation

$$d\sigma/dt \propto (W^2)^{2lpha_{
m P}(t)-2}$$
 $lpha_{
m P}(t)=lpha_{
m P}+tlpha_{
m P}'$ Pomeron trajectory $lpha_{
m P}=1.08,\;\deltapprox0.2$ finite average t

Hard expectation

QCD evolution: x-dependence of gluon GPD becomes steeper at higher $Q^2\to\delta$ increases

Observations

 $\delta(Q^2)$ rises from soft value

Universality of vacuum exchange channels

Figure: A. Levy, arXiv:0711.0737

W dependence of exclusive photoproduction cross sections

Light: ρ^0, ϕ expect soft

Heavy: $J/\psi, \Upsilon$ expect hard

Observations

 ho^0, ϕ : W dependence agrees with soft expectation, same between ho^0 and ϕ

 $J/\psi, \Upsilon$: W dependence steeper, Υ steeper than J/ψ , consistent with hard expectation

Figures: A. Levy, arXiv:0711.0737

- t-dependence of exclusive meson production $d\sigma/dt \propto e^{Bt}, \ B = B(Q^2)$
- Observations

B decreases from $Q^2=0$ to $\sim 10~{\rm GeV}^2$: Decrease of transverse range of interaction, soft \to hard transition

B stable above $Q^2 \sim 10~{\rm GeV}^2$: Hard regime, t-dependence from gluon GPD

Universality of channels: Gluon GPD

ullet Further: Combined W and t dependence

Effective Pomeron trajectory for fixed Q^2

Effective $lpha_{
m P}$ and $lpha_{
m P}'$ depend on Q^2

Forward production: Nonvacuum exchange

Basic features of amplitudes explained by well-known Regge pole exchanges ↔ meson spectrum
Reviews Irving, Worden 77; Storrow 87

Open questions: Absorption vs. NWSZ zeros, cuts

Finite-energy sum rules: Resonances ↔ Regge exchanges Photoproduction: JPAC Nys et al 16+

Nonsinglet quark GPDs: $q-\bar{q},u-d$, helicity/transversity

Pseudoscalars π^0, η : Chiral-odd GPDs/DAs, σ_T dominant Goldstein Liuti et al 08, Goloskokov, Kroll 11

Vectors ρ , K^* : Which structures work?

Soft-hard transition largely unexplored

 $\alpha_{\rm R}' \approx 0.8~{\rm GeV}^2$ — what happens at finite Q^2 ? Must be encoded in x-t correlation in GPDs Form factors: Guidal, Polyakov, Radyushkin, Vanderhaeghen 05

Should be major focus of studies at JLab12 and EIC!

Baryon exchange

• Soft: Baryon Regge exchange

Baryon spectrum well known \rightarrow trajectories

Symmetry constraints: Trajectories as parity doublets $\alpha_{\rm B}^{\pm}(\sqrt{u})$

Reggeization effects not well studied experimentally: s-dependence $\to \alpha_{\rm B}$, combined s-u dependence $\to \alpha'_{\rm B}$

Theoretical interest: LQCD spectroscopy, large- N_c limit

Hard: QCD mechanism with TDAs

Similar as pQCD mechanism in baryon form factors – applicable?

Large uncertainties from DAs/TDAs, QCD coupling

 Q^2 for qqq pQCD mechanism expected much larger than for $qar{q}$

Frankfurt, Polyakov, Pobylitsa, Strikman 99; Pire, Semenov-Tian-Shansky, Szymanowski 10 \rightarrow Talk Semenov-Tian-Shansky

• Soft-hard transition: Unexplored

Backward production: Measurements

- \bullet Basic measurements of backward production in soft regime $Q^2 \sim {\rm few~GeV^2}$ would be very instructive:
 - A) W dependence of $d\sigma/dt$ near u=0 (or u_{\min}), or of u-integrated σ :
 - \rightarrow Is it Regge-like dependence?
 - \rightarrow Is the exponent consistent with $\alpha_{B}(0)$?
 - B) Combined W and u dependence of $d\sigma/dt$ in backward peak:
 - \rightarrow Does u-dependence change with W?
 - \rightarrow Can we infer $\alpha_{\rm B}'$?
 - C) Comparison of different channels: $\pi \leftrightarrow \sigma, \pi \leftrightarrow \rho, \rho \leftrightarrow \omega$
 - → Reggeon couplings, universality, chiral symmetry
- ullet How do these properties change with Q^2
 - → Soft-hard transition?
- Formulation of detailed program requires further work (model predictions) and depends on outcome of measurements in soft regime

Summary 12

ullet Soft-hard transition as function of Q^2 is an attractive perspective for analyzing electroproduction processes

• Status and prospects in different channels

$t ext{-channel}$ vacuum exchange	soft: simple, well understood hard: understood, quantitative	transition studied HERA
t-channel nonvacuum exchange	soft: solid phenomenology hard: formalism, some successes, open questions	transition mostly unexplored JLab12, EIC
$\it u$ -channel baryon exchange	soft: phenomenology, open questions hard: formalism, open questions	transition unexplored JLab12, EIC

- \bullet "u-channel physics" should not be discussed in isolation, but as part of larger investigation involving also other channels, esp. t-channel nonvacuum
- Soft dynamics is an "emergent phenomenon" of QCD: Fundamental interest, high-level narrative