Exploring the soft-hard transition in forward and backward meson production

C. Weiss (JLab), Backward Angle u-Channel Physics Workshop, 21-Sep-2020

- High-energy meson production
 - Forward and backward regions
 - Exchange mechanisms
 - Soft-hard transition in Q^2

- Forward production
 - Soft: Pomeron/Reggeon exchange
 - Hard: Small-size $gg/q\bar{q}$ exchange, pQCD, GPDs
 - Vacuum and non-vacuum channels

- Backward production
 - Soft: Baryon Regge exchange, status, questions
 - Hard: Small-size qqq exchange, pQCD, TDAs
 - Measurements needed
High-energy meson production

\[\text{Projectile} + N \rightarrow M + N' \]

Above resonance region \(s \gg s_{\text{res}} \sim \text{few GeV}^2 \)

Projectile: Meson, \(\gamma, \gamma^*(Q^2) \)

Forward and backward regions

Forward: \(|t| \lesssim 1 \text{ GeV}^2, \mid u \mid \sim s \)

Backward: \(|u| \lesssim 1 \text{ GeV}^2, \mid t \mid \sim s \)

Exchange mechanisms

Formal: \(s \rightarrow \infty \) asymptotics governed by singularities in \(t, u \)

Dynamical: Hadrons, QCD DoF

Characteristics: Quantum numbers, \(Q^2 \) dependence in electroproduction
Forward production: Soft and hard regime

- **Soft**: Photo/electroproduction at $Q^2 \lesssim R_{\text{had}}^{-2} \approx M_\rho^2$

 Transverse range of interaction \sim hadronic size R_{had}

 Exchange: Regge trajectories

 Vacuum quantum numbers: Pomeron, Reggeons
 Non-vacuum: Reggeons

 Features: $s \leftrightarrow t$ dependence, universality of trajectories

- **Hard**: Electroproduction at $Q^2 \gg R_{\text{had}}^{-2}$ or heavy meson

 Transverse range of interaction $\ll R_{\text{had}}$

 QCD factorization for γ^*_{L}, for γ^*_T with modifications
 Collins, Frankfurt, Strikman 96

 Exchange: $gg, q\bar{q}$ with transverse size $\ll R_{\text{had}}$

 Coupling to nucleon: GPD

 Features: Q^2 scaling; s and t dep changing with Q^2 (evolution), universality of GPDs
Forward production: Soft-hard transition

• Study transition from soft to hard regime as function of Q^2

 Focus on model-independent features of each regime:
 s-dependence; interplay of s and t dependences; universality

• Interest

 QCD factorization is asymptotic approximation: Need to quantify region of applicability, magnitude of sub-asymptotic corrections. *Essential for processes in JLab12 kinematics.*

 Soft dynamics can guide modeling of GPDs: “Initial condition” of Q^2 evolution

 Soft dynamics as object of study: “Emergence” of Regge dynamics from QCD

 New possibility provided by electroproduction: Progress beyond study of photo- and hadroproduction, complementarity

• Strategy

 Review results in forward vacuum exchange processes
 HERA

 Consider extension to forward non-vacuum exchange and backward processes
 JLab12, EIC
Forward production: Vacuum exchange

- Vacuum exchange channels measured at HERA

\[M = \rho^0, \phi, J/\psi, \Upsilon, \gamma \]
\[W = 30–200 (300) \text{ GeV}, \quad Q^2 = 0–30 \text{ GeV}^2 \]

- Soft regime: Pomeron exchange

Well established, numerous tests

\[\rho^0, \phi \text{ at } Q^2 = 0 \]

- Hard regime: GPD-based description

Gluon GPD, QCD evolution, effective scale, finite \(q\bar{q} \) size
Successful phenomenology, quantitative predictions

Frankfurt, Strikman, Koepf 96; Goloskokov, Kroll 08; Anikin, Ivanov, Pire, Szymanowski, Wallon 10. See also: Belitsky Müller 01; Ivanov, Szymanowski, Krasniov 04

\[\rho^0, \phi \text{ for } Q^2 \gtrsim 10 \text{ GeV}^2; \quad J/\psi, \Upsilon \text{ any } Q^2 \]

- Soft-hard transition: Extensive studies
Forward production: W dependence

- W dependence of exclusive cross sections

 Fit $\sigma \propto W^\delta$, $\delta = \delta(Q^2)$

- Soft expectation

 $d\sigma/dt \propto (W^2)^{2\alpha_P(t) - 2}$

 $\alpha_P(t) = \alpha_P + t\alpha'_P$
 Pomeran trajectory

 $\alpha_P = 1.08, \delta \approx 0.2$
 finite average t

- Hard expectation

 QCD evolution: x-dependence of gluon GPD becomes steeper at higher $Q^2 \rightarrow \delta$ increases

- Observations

 $\delta(Q^2)$ rises from soft value

 Universality of vacuum exchange channels

Forward production: W dependence

- W dependence of exclusive photoproduction cross sections

 Light: ρ^0, ϕ
 expect soft

 Heavy: $J/\psi, \Upsilon$
 expect hard

- Observations

 ρ^0, ϕ: W dependence agrees with soft expectation, same between ρ^0 and ϕ

 $J/\psi, \Upsilon$: W dependence steeper, Υ steeper than J/ψ, consistent with hard expectation

Figure: A. Levy, arXiv:0711.0737
Forward production: t dependence

- t-dependence of exclusive meson production
 \[\frac{d\sigma}{dt} \propto e^{Bt}, \quad B = B(Q^2) \]

- Observations

 B decreases from $Q^2 = 0$ to ~ 10 GeV2:
 Decrease of transverse range of interaction, soft \rightarrow hard transition

 B stable above $Q^2 \sim 10$ GeV2:
 Hard regime, t-dependence from gluon GPD

 Universality of channels: Gluon GPD

- Further: Combined W and t dependence

 Effective Pomeron trajectory for fixed Q^2

 Effective α_P and α'_P depend on Q^2

- **Soft**: Regge phenomenology

 Basic features of amplitudes explained by well-known Regge pole exchanges ↔ meson spectrum
 Reviews Irving, Worden 77; Storrow 87

 Open questions: Absorption vs. NWSZ zeros, cuts

 Finite-energy sum rules: Resonances ↔ Regge exchanges
 Photoproduction: JPAC Nys et al 16+

- **Hard regime**: QCD factorization

 Nonsinglet quark GPDs: $q - \bar{q}$, $u - d$, helicity/transversity

 Pseudoscalars π^0, η: Chiral-odd GPDs/DAs, σ_T dominant
 Goldstein Liuti et al 08, Goloskokov, Kroll 11

 Vectors ρ, K^*: Which structures work?

- **Soft-hard transition largely unexplored**

 $\alpha'_R \approx 0.8 \text{ GeV}^2$ – what happens at finite Q^2?
 Must be encoded in x-t correlation in GPDs
 Form factors: Guidal, Polyakov, Radyushkin, Vanderhaeghen 05

 Should be major focus of studies at JLab12 and EIC!
Backward production: Soft and hard regimes

- **Soft:** Baryon Regge exchange

 Baryon spectrum well known \rightarrow trajectories

 Symmetry constraints: Trajectories as parity doublets $\alpha_B^\pm(\sqrt{u})$

 Reggeization effects not well studied experimentally:
 s-dependence $\rightarrow \alpha_B$, combined $s-u$ dependence $\rightarrow \alpha'_B$

 Theoretical interest: LQCD spectroscopy, large-N_c limit

- **Hard:** QCD mechanism with TDAs

 Similar as pQCD mechanism in baryon form factors – applicable?

 Large uncertainties from DAs/TDAs, QCD coupling

 Q^2 for qqq pQCD mechanism expected much larger than for $q\bar{q}$

 Frankfurt, Polyakov, Pobyliitsa, Strikman 99; Pire, Semenov-Tian-Shansky, Szymanowski 10

 \rightarrow Talk Semenov-Tian-Shansky

- **Soft-hard transition:** Unexplored
• Basic measurements of backward production in soft regime $Q^2 \sim \text{few GeV}^2$ would be very instructive:

A) W dependence of $d\sigma/dt$ near $u = 0$ (or u_{min}), or of u-integrated σ:

→ Is it Regge-like dependence?
→ Is the exponent consistent with $\alpha_B(0)$?

B) Combined W and u dependence of $d\sigma/dt$ in backward peak:

→ Does u-dependence change with W?
→ Can we infer α'_B?

C) Comparison of different channels: $\pi \leftrightarrow \sigma, \pi \leftrightarrow \rho, \rho \leftrightarrow \omega$

→ Reggeon couplings, universality, chiral symmetry

• How do these properties change with Q^2

→ Soft-hard transition?

• Formulation of detailed program requires further work (model predictions) and depends on outcome of measurements in soft regime
• Soft-hard transition as function of Q^2 is an attractive perspective for analyzing electroproduction processes

• Status and prospects in different channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>Soft</th>
<th>Hard</th>
<th>Transition and Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-channel</td>
<td>simple, well understood</td>
<td>understood, quantitative</td>
<td>HERA</td>
</tr>
<tr>
<td>vacuum exchange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-channel</td>
<td>solid phenomenology</td>
<td>formalism, some successes, open questions</td>
<td>JLab12, EIC</td>
</tr>
<tr>
<td>nonvacuum exchange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u-channel</td>
<td>phenomenology, open questions</td>
<td>formalism, open questions</td>
<td>JLab12, EIC</td>
</tr>
<tr>
<td>baryon exchange</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• “u-channel physics” should not be discussed in isolation, but as part of larger investigation involving also other channels, esp. t-channel nonvacuum

• Soft dynamics is an “emergent phenomenon” of QCD: Fundamental interest, high-level narrative