2020 Backward-angle Physics Workshop: *u*-channel π⁰ Production from JLab 12 GeV to EIC

Wenliang (Bill) Li

William and Mary Postdoctoral Researcher

Outline

- Introduction to the backward π^0 physics
 - Few 6 GeV measurements
- Backward π^0 production at JLab 12 GeV
 - Newly approved E12-20-007
- Backward π^0 production at EIC
 - Preliminary studies (part of Yellow Report)

6 GeV Backward Angle Physics at W < 2 GeV

- Accessing Backward Angle (CM) meson is not a new concept via missing mass distribution
- Common features: Resonance region studies.

6 &12 GeV Backward Angle Physics at W > 2 GeV

Backward angle in this talk: backward angle physics above the resonance region (W>2 GeV²)

$$u' \rightarrow u_{\min}, t > Q^2$$

- **This talk is about an example of e+p \rightarrow e' + p' + \pi^0**
 - **JLab 12** \rightarrow **EIC (** Q^2 scaling route)

E12-20-007 Backward-angle ${}^{1}H(e,e'p)\pi^{0}$ at Hall C

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q ² GeV ²	W GeV	E	x	θ _{pq} Degree
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	3.00	0.32	0.20	-3, 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.79	0.20	-2.8, 0, +3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	2.11	0.52	0.36	-3, 0, +3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.94	0.36	-3, 0, +3
0.86 0.36 -3, 0, +3 4.0 2.83 0.56 0.36 -3, 0, +3 0.73 0.36 -3, 0, +3 5.0 3.13 0.26 0.36 -3, 0, +3 0.55 0.36 -3, 0, +3 6.25 3.46 0.27 0.36 0	3.0	2.49	0.54	0.36	-3, 0, +3
4.0 2.83 0.56 0.36 -3, 0, +3 0.73 0.36 -3, 0, +3 0.55 0.36 -3, 0, +3 0.55 0.36 -3, 0, +3 0.55 0.36 -3, 0, +3 0.55 0.36 -3, 0, +3 0.55 0.36 -3, 0, +3 0.55 0.36 -3, 0, +3 0.55 0.36 0			0.86	0.36	-3, 0, +3
0.73 0.36 -3, 0, +3 5.0 3.13 0.26 0.36 -3, 0 0.55 0.36 -3, 0, +3 -3, 0, +3 6.25 3.46 0.27 0.36 0	4.0	2.83	0.56	0.36	-3, 0, +3
5.0 3.13 0.26 0.36 -3, 0 0.55 0.36 -3, 0, +3 6.25 3.46 0.27 0.36 0			0.73	0.36	-3, 0, +3
0.55 0.36 -3, 0, +3 6.25 3.46 0.27 0.36 0	5.0	3.13	0.26	0.36	-3, 0
6.25 3.46 0.27 0.36 0			0.55	0.36	-3, 0, +3
	6.25	3.46	0.27	0.36	0

First dedicated *u*-channel electroproduction study above the resonance region:

- Q² coverage: 2.0 < Q² < 6.25 GeV², at x=0.36 and W > 2 GeV L/T separated cross section @ Q²= 2, 3, 4 and 5 GeV².
- $u \text{ coverage: } 0 < -u' + 0.5 < 0.5 \text{ GeV}^2$
- Additional W scaling check @ Q² = 2 GeV²
- Additional Q² scaling check @ Q² = 6.25 GeV²
- E12-20-007 is approved by PAC 48 with 29 PAC days of running! (First dedicated u-channel study at JLab)

Particle Identification

HMS as e arm (most settings)

- Standard e PID, HGC < 1 atm various pressure
- Aerogel: n=1.0011 tray for proton ID (for e- detection setting)

SHMS as proton arm (most settings)

- NGC installation (for e- detection setting)
- HGC: 1 atm vetoing π and K
- Aerogel: n=1.0003 tray for proton ID (threshold cut at 3 p.e.)

SHMS β vs Coincidence timing structure:

- Coincidence timing is the primary method for the proton
- Primary Physics Background
 - Two pion exchange phase-space
 - DVCS

Main objective #1: Soft-hard Transition Predictions

Objective #1: u-dependence of the separated cross section

• Extracting -u dependence of the unseparated cross section and interaction radius:

$$\sigma = A e^{-b \, \cdot \, |u|}, \ r_{int} = \sqrt{b} \, \hbar \, c$$

Study of parameter *r* as function of *Q*², probe the proton structure transition from hadronic to partonic degrees of freedom. (Similar to study by Halina Abramowicz, Leonid Frankfurt, Mark Strikman, arXiv:hep-ph/9503437, 1995.)

Main objective #2: TDA Predictions

- The end results from the measurement will
 - Confirm if $\sigma_{T} >> \sigma_{I}$, as it was predicted by TDA (see Kirill's presentation)
 - Confirm $\sigma_{\rm T} \propto 1/Q^8$ as it was predicted by TDA
- Gain insights regarding soft-hard transition.
 - No definitive conclusion based on single channel (must combine with ω result)

Prospect of *u***-channel** π^0 **Study at** *s***=10 GeV**²

• PANDA

- proton anti-proton annihilation
- S. Diehl's talk
- JLab 12 GeV: E12-20-007

 ¹H(e,e'p)π⁰, a simple measurement

• Future Electron-ion Collider (EIC)

- e-p collision: $e+p \rightarrow e+p+\pi^0$
- L/T separation not required if $\sigma_T >> \sigma_L$, is demonstrated by E12-20-007
- Real photon
 - no *u*-channel data available
 - See next slide

π^0 Production Measurement via Real Photon

p(γ, π^0)p study as function of -*t*, s~10 GeV²

- Open circles: DESY data
- Open squares: 6 GeV CLAS data
- Full circles: SLAC data

- No measurement available yet
- \circ Open question: would the γ^* extrapolate to the real photon point?

BNL-EIC Project

Wenliang Li, Dept. of Physics, William and Mary, Williamson, M. Loroo, Co.

Next generation Electron-Ion Collider (EIC)

- Current consists of 1 interaction region (IR)
- Luminosity with 100 GeV p on 5 GeV e: 10 x10³³ cm⁻²s⁻¹

Project location:

Brookhaven National Lab (BNL), NY

Project information:

- CD-0 approved ~ \$2 B
- Completion in ~10-15 years

EIC Central Detector Update-to-date Concept

Hadron End Cap

- η > 1 (~45 Degrees)
- HCal + EmCal
- RICH
- Tracking

Electron End Cap

- η < -1
- HCal+EmCal
- Tracking
- Cherenkov PID

Barrel Calorimeter

- $-1 < \eta < 1$
- Not needed for the *u*-channel
- Used as veto

Zero-degree Calorimeter (not shown)

• Expecting neutral particles

Interaction picture

Visualizing *u*-channel π^0

14

Realistic ZDC Acceptance (through magnets Aperture)

$\pi^0 ightarrow$ 2 γ Detection at ZDC

- Double photon efficiency for the nominal π⁰ event is larger than 20%
- Detector (magnetic aperture) constrains:
 - Fixing center of the neutral particle at ZDC
 - Ensuring largest possible symmetrical acceptance

Recoil Proton Detection

Figures created by Alexander Kiselev

Proton End Cap constrain

• Recoiled proton $|\eta| < 4.13$

+/- 4.5 m

354 331 (9000 00 mm

REBYLLIUM SECTION

- Limited detector acceptance near the incidence electron and outgoing proton beam pipe
 - Preliminary assessment: Acceptance is feasible with reduced efficiency, further simulation work is required.

LECTRON REAM AXIS

FLECTRON FORWARD

Top view

Physics background (to our current best knowledge)

- Double photon case:
 - Primary reaction: $e+p > e'+p' + \pi^0$
 - \circ Ideal expected trigger: e'+p'+ 2 γ
 - Physics background: none
 - \circ ~ Less than ideal trigger: e'+2 γ
 - Background: Δ ->n+ π^0
- Single photon case:
 - Primary reaction: $e+p > e'+p' + \pi^0$
 - \circ Ideal expected trigger: e'+p'+ γ
 - Physics background: DVCS, eta, Δ ->n+ π^0
 - \circ ~ Less than ideal trigger: e'+ γ
 - Background: many possibilities
- We can use the double photon event to normalize the single photon events

Conclusion and Thank you !

- Exclusive *u*-channel π⁰ at proposed s =10 GeV² is a feasible measurement
 - Prefered (golden) observable $e'+p' + 2\gamma$ is achievable !
 - To be included in the EIC Yellow Report as an example
- Large kinematics available at EIC can support *u*-channel *W* scaling study (while fixing Q^2) with u-channel π^0 with current IR and detector design.
- L/T separation capability is to be determined (likely to be very challenging)
- Feasibility of other mesons such as η and ω is to come

PR12-20-007 Submitted PAC 48

EIC $e+p \rightarrow e+p+\pi^0$ for 5 GeV e on 41 GeV p

						,							
Q^2 (GeV ²)	W (GeV)	$x_{\rm B}$	$ heta_{e'}$ (deg)	$\eta_{e'}$	$P_{e'}$ (GeV)	$\theta_{p'} \ ({ m deg})$	$\eta_{p'}$	$P_{p'}$ (GeV)	$ heta_{\pi^0}$ (deg)	η_{π^0}	P_{π^0} (GeV)	-t (GeV ²)	-u (GeV ²)
6.2	3.19		152	-1.39	5.31	-1.84	4.13	43.40	1.43	4.38	56.29	14.84	-0.37
7.0	3.19		150	-1.32	5.35	-1.92	4.09	45.50	1.43	4.38	54.12	16.19	-0.39
8.2	3.19		148	-1.24	5.40	-1.85	4.12	49.74	1.43	4.38	49.84	16.80	-0.42
9.3	3.19		146	-1.19	5.46	-1.92	4.09	51.90	1.43	4.38	47.60	18.19	-0.44
10.5	3.19		144	-1.12	5.52	-1.94	4.07	54.96	1.43	4.38	44.50	19.32	-0.47

5 GeV e on 100 GeV p

													1
Q^2	W	$x_{\rm B}$	$\theta_{e'}$	$\eta_{e'}$	$P_{e'}$	$\theta_{p'}$	$\eta_{p'}$	$P_{p'}$	$ heta_{\pi^0}$	η_{π^0}	P_{π^0}	-t	-u
(GeV^2)	(GeV)	2010	(deg)		(GeV)	(deg)		(GeV)	(deg)		(GeV)	(GeV^2)	(GeV^2)
6.1	3.15		152	-1.39	5.25	-6.54	2.86	17.69	1.43	4.38	23.05	14.67	-0.37
7.1	3.14		150	-1.32	5.29	-6.55	2.86	18.97	1.43	4.38	21.73	15.61	-0.40
8.1	3.14		148	-1.24	5.34	-6.67	2.84	19.96	1.43	4.38	20.69	16.83	-0.42
9.1	3.14		146	-1.19	5.39	-6.71	2.84	21.16	1.43	4.38	19.44	17.90	-0.44
10.4	3.19		144	-1.12	5.43	-7.72	2.70	19.95	1.43	4.38	20.61	21.29	-0.42
							· · · · · · · · · · · · · · · · · · ·						

5 GeV e on 41 GeV p

Much improved

Momentum too low!

EIC $e+p \rightarrow e+p+\pi^0$ for 5 GeV e on 41 GeV p

Conclusion:

- No double photon detection on the ZDC!
- Proton will be at a more optimal angle
- 5 GeV e on 100 GeV p is more optimal.
- The setting configuration of 10 GeV e on 100 GeV p is similar

From Pavia Meeting

cm radius circle at 32 meters from IR! much smaller than expected 60x60 cm² square!

What does this mean for the two photons?

Detecting a 20-50 GeV pi0

- At 20-50 GeV, π^{0} -> 2 gamma decay angle (between two photon) is 0.8-0.4 degree.
- Best way to detect π^0 at neutro $\sin \theta_{\max} = \frac{m_{\pi}}{2E_{\gamma}}$ we need to insert lead to slow down π^0 ? Resolution needed to distinguish pi0 from single photon DVCS events?
- Simulation is needed to answer these questions
- Some feedbacks and suggestions from experts:
 - Abhay: PHENIX central arm, 5 meters from IR. pi0->2photon separation at about 20 GeV. Our calorimeter granularity 2.7 cm square facing the IR.
 - Elke: In Star, ECal at 7m and separate pi0 up to 60 gev
 - Preshower to the calorimeter?

Question and Discussion

- How ready is fast-smear and full simulation for the tagging detector to perform photon/neutron PID study?
- Small angle proton detection, complications?
- Backward π^0 is just the beginning
 - Study on u-channel η , ω , π^{+} is in the plan (not inclued in YR)
 - Our currently knowledge of *u*-channel physics in the DIS region almost none
 - Unknown *W* dependence (EIC possible)
 - Unknown x_B dependence (EIC + 12 GeV possible)
 - Unclear -t dependence (EIC possible, but required significant modification to ZDC, bigger ZDC)
 - L/T Separation possibility? (Need more study)
- More and more *u*-channel data will come out of 12 GeV, on all meson production channels
- Would be there a universality (*t*-channel and *u*-channel) effort in the EIC era?

