

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Introduction

Focus of this talk:

Extraction of beam-spin asymmetries from the hard exclusive π^+ channel off protons in a wide range of kinematics

S. Diehl,^{7,24} K. Joo,⁷ A. Kim,⁷ H. Avakian,³⁹ P. Kroll,⁴⁸ K. Park,²⁵ D. Riser,⁷ K. Semenov-Tian-Shansky,²⁹ K. Tezgin,⁷ K.P. Adhikari,³² S. Adhikari,¹² M.J. Amaryan,³² G. Angelini,¹⁴ G. Asryan,⁴⁹ H. Atac,³⁸ L. Barion,¹⁶ M. Battaglieri,^{39,18} I. Bedlinskiy,²⁷ F. Benmokhtar,⁹ A. Bianconi,^{42,21} A.S. Biselli,¹⁰ F. Bossù,⁵ S. Boiarinov,³⁹ W.J. Briscoe,¹⁴ W.K. Brooks,^{40,39} D. Bulumulla,³² V.D. Burkert,³⁹ D.S. Carman,³⁹ J.C. Carvajal,¹² A. Celentano,¹⁸

accepted by PRL, available online soon

https://journals.aps.org/prl/accepted/9007fY83D271317096987c814a1b9bccbe706247e

https://arxiv.org/abs/2007.15677

Outlook on opportunities with CLAS12

Theory collaborators: K. Semenov-Tian-Shansky, B. Pire, L. Szymanowski

Comparison of t and u channel physics

Backward π electroproduction with CLAS at JLAB

- CLAS (e16 + e1f run period)
- 5.5, 5.75 GeV longitudinally polarized electron beam
- unpolarized hydrogen target
- Electron ID based on electromagnetic calorimeter and Cherenkov counters
- **π ID** based on a maximum likelyhood
 particle selection from TOF based
 β vs p correlation

CLAS π⁺ study

$$ep \rightarrow en\pi^{+}$$

Kinematics accessible with CLAS ($E_b = 5.5 \text{ GeV}$)

DIS cuts: W > 2 GeV $Q^2 > 1 \text{ GeV}^2$

09/21/2020

Beam spin asymmetry in forward and backward direction

Cross section (longitudinally pol. beam and unpol. target):

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos(2\phi)} \cos(2\phi) + A_{UU}^{\cos(\phi)} \cos(\phi) + h A_{LU}^{\sin(\phi)} \sin(\phi))$$

$$BSA(t,\phi,x_B,Q^2) = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-}$$
$$= \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos 2\phi}\cos 2\phi}$$
$$A_{LU}^{\sin\phi} = \frac{\sqrt{2\epsilon(1-\epsilon)}\sigma_{LT'}}{\sigma_T + \epsilon\sigma_L}$$

Beam spin asymmetry in forward and backward direction

$$BSA_i = \frac{1}{P_e} \cdot \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-} \qquad P_e = 75 \ \% \text{ : average } e^- \text{ beam } polarisation$$

BSA for different -t bins

-t dependence of $A_{LU}^{\sin(\phi)}$

Backward-Angle (u-chanel) Physics Workshop

Theoretical description

Forward direction:

- -t < 0.75 GeV² (-t/Q² ≈ 0.25)
- → Leading twist GPD framework
- GPD-based model by Goloskokov and Kroll

$$A_{LU}^{\sin\phi} \sim \frac{\sigma_{LT'}}{\sigma_T + \varepsilon \sigma_L}$$

$$\sigma_{LT'} \sim Im \left[\langle \overline{E}_{T-eff} \rangle^* \langle \widetilde{H}_{eff} \rangle + \langle H_{T-eff} \rangle^* \langle \widetilde{E}_{eff} \rangle \right]$$

$$\widetilde{E}_{eff} = \widetilde{E} + pole \ term$$
$$\widetilde{H}_{eff} = \widetilde{H} + \frac{\xi^2}{1 - \xi^2} \ \widetilde{E}_{eff}$$

➔ Discrepancy caused by the interplay between the pion pole term and the poorly known GPDs H_T and E_T

Theoretical description

Backward direction:

$$\sigma_{LT'} \sim \operatorname{Im}\left[\langle H_i^{\text{tw3}} \phi_j^{\text{tw3}} \rangle \left(\langle H_i^{\text{tw4}} \phi_j^{\text{tw3}} \rangle + \langle H_i^{\text{tw3}} \phi_j^{\text{tw4}} \rangle \right)^* \right]$$

Interference between leading twist transverse amplitudes \rightarrow twist-3 π N TDAs (H^{tw3}) and nucleon DAs (ϕ^{tw3}) and next leading sub-process longitudinal amplitudes

 \rightarrow twist-4 TDAs (H^{tw4}) and DAs (ϕ ^{tw4})

→ Complete theoretical study of the twist-4 longitudinal amplitudes not yet available

Open questions: Which particular twist-4 π N TDAs and DAs will contribute? What kind of phenomenological models can be implemented?

Outlook on opportunities with CLAS12

RG-A: Data recorded during 2018 and 2019

- → 10.6 GeV polarized electron beam → liquid H_2 target
- ➔ Other run groups with different beam energies, a deuterium target and polarized targets are currently taking data or are scheduled to take data

Opportunities with CLAS12

Examples for the feasability of exclsuive meson production in the different kinematic regimes:

CLAS12 coverage of the t and u channel

Summary and Outlook

• $A_{LU}^{\sin(\phi)}$ moment from the hard exclusive π^+ channel has been extracted for the first time over a large range of kinematics with CLAS.

- The results show a clear sign change from forward to backward angles, which may indicate a transition from the GPD to the TDA regime.
- CLAS 12 enables the study of different hard exclusive channels over a wide range of kinematics.

