Studying TDAs with $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \boldsymbol{T}^{0}$ at the PANDA Experiment

JUSTUS-LIEBIGTUNIVERSITAT GIESSEN

Stefan Diehl
for the PANDA collaboration
Justus Liebig University Giessen
University of Connecticut

Outline

- The PANDA Experiment at FAIR
- Study of TDAs with the reaction $\bar{p} p \longrightarrow e^{+} e^{-} \pi^{0}$

Experimental access to Transition Distribution Amplitudes with the $\overline{\mathrm{P}}$ ANDA experiment at FAIR

Eur. Phys. J. A (2015) 51: 107 DOI 10.1140/epja/i2015-15107-y

- Study of TDAs with the reaction $\bar{p} p \rightarrow J / \psi \pi^{0}$

Feasibility study for the measurement of πN TDAs at $\overline{\text { PASNDA }}$ in $\bar{p} p \rightarrow J / \psi \pi^{0}$
The $\overline{\text { PA ANDA Collaboration }}$
Phys. Rev. D 95, 032003 (2017)

The PANDA Experiment at FAIR

The PANDA Experiment at FAIR

TDAs: From electron scattering to proton-antiproton annihilation

TDAs: From electron scattering to proton-antiproton annihilation

TDAs also occur in factorized description of:

$$
\begin{aligned}
& \bar{N}+N \rightarrow \gamma^{*}(q)+\pi \rightarrow \ell^{+}+\ell^{-}+\pi \\
& \bar{N}+N \rightarrow J / \psi+\pi \rightarrow \ell^{+}+\ell^{-}+\pi
\end{aligned}
$$

\uparrow crossing symmetry

-
J.P. Lansberg et al. (2012), B. Pire, L. Szymanowski, K. Semenov-Tian-Shansky (2013)

Factorisation in the annihilation process

$$
\bar{p} p \rightarrow \gamma^{*} \pi^{0}
$$

Two possibilities for factorization in the annihilation process

near backward regime

$$
\begin{gathered}
s=\left(p_{1}+p_{2}\right)^{2}, q^{2} \text { - large } \\
\left.|t|=\left|\left(k_{3}-p_{1}\right)^{2}\right| \sim 0\right)
\end{gathered}
$$

\rightarrow Pion in backward ($\overline{\mathrm{p}}$) direction

near forward regime

$$
\begin{gathered}
s=\left(p_{1}+p_{2}\right)^{2}, q^{2} \text { - large } \\
|u|=\left|\left(k_{3}-p_{2}\right)^{2}\right| \sim 0
\end{gathered}
$$

\rightarrow Pion in forward (p) direction

Expected characteristics from the TDA model

Experimental checks for the onset of the collinear factorization regime

 for hard exclusive reactions:\rightarrow Dominance of the specific polarization of the virtual photon
\rightarrow Characteristic scaling behaviour of the cross section in $1 / q^{2}$
\rightarrow Universality of the corresponding non-perturbative quantities

$$
\begin{aligned}
& \bar{p} p \rightarrow \gamma^{*} \pi^{0}->e^{+} e^{-} \pi^{0} \quad \begin{array}{c}
\rightarrow \begin{array}{c}
\text { transverse polarization of } \\
\text { the virtual photon dominates }
\end{array} \\
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} t \mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell}^{*}}\right|_{\text {Leading twist }}=\frac{K}{s-4 M^{2}} \frac{1}{\left(q^{2}\right)^{5}} \frac{\left.1+\cos ^{2} \theta_{\ell}^{*}\right)}{}
\end{array} .
\end{aligned}
$$

TDA measurements with PANDA $\left({ }^{*}{ }^{*}{ }^{0}\right)$

Eur.Phys.J. A51 (2015) 8, 107

First feasability study for: $\bar{p} p \rightarrow \gamma^{*} \pi^{0}->e^{+} e^{-} \pi^{0}$

Two different momenta of the antiproton beam were investigated:
i) $\mathrm{s}=5 \mathrm{GeV}^{2} \quad \rightarrow \quad 3.0<\mathrm{q}^{2}<4.3 \mathrm{GeV}^{2}, \quad\left|\cos \theta_{\pi^{\mathrm{o}}}\right|>0.5$
ii) $\mathrm{s}=10 \mathrm{GeV}^{2} \quad \rightarrow \quad 5<\mathrm{q}^{2}<9 \mathrm{GeV}^{2}, \quad\left|\cos \theta_{\pi \mathrm{o}}\right|>0.5$

Estimated beam time: $1 / 2$ year at the design luminosity of $2 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\longmapsto Luminosity $=2 \mathrm{fb}^{-1}$

TDA measurements with PANDA $\left({ }^{*}{ }^{*}{ }^{0}\right)$

Different background processes have been investigated
Most dominant background expected from $\bar{p} p \longrightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\sigma\left(\pi^{+} \pi^{-} \pi^{0}\right) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}\right) \sim 10^{6}
$$

Background suppression:

$$
\begin{aligned}
& s=5 \mathrm{GeV}^{2}: 5 \cdot 10^{7} \text { at low } q^{2}\left(1 \cdot 10^{7} \text { at high } q^{2}\right) \\
& s=10 \mathrm{GeV}^{2}: 1 \cdot 10^{8} \text { at low } q^{2}\left(6 \cdot 10^{6} \text { at high } q^{2}\right)
\end{aligned}
$$

\rightarrow Background can be well suppressed by the PANDA PID in all cases
\rightarrow Signal reconstruction efficiency is in the order of 40 \%

TDA measurements with PANDA $\left(\nu^{*} \Pi^{0}\right)$

TDA measurements with PANDA ($\mathrm{Y}^{*} \boldsymbol{\pi}^{0}$)

$$
\bar{p} p \rightarrow \gamma^{*} \pi^{0} \quad \frac{d \sigma}{d q^{2}} \sim\left(1+\cos ^{2} \theta_{\ell}^{*}\right) \rightarrow \begin{aligned}
& \text { Test of the dominance of the transverse } \\
& \text { polarisation of the virtual photons }
\end{aligned}
$$

TDA measurements with PANDA ($\mathrm{J} / \Psi \Pi^{0}$)

Feasability study for: $\bar{p} p \rightarrow J / \psi \pi^{0}->e^{+} e^{-} \pi^{0}$

near backward regime

near forward regime
B. Pire et al., Phys. Lett. B. 724 99-107 (2013)

TDA measurements with PANDA ($\mathrm{J} / \Psi \Pi^{0}$)

- A TDA model based event generator has been used
π^{0} distributions at the 3 studied beam momenta:
Phys. Rev. D 95, 032003 (2017)

Expected signal rates, $s=12.25 \mathrm{GeV}^{2}$

> C invariance "perfect symmetry"
\rightarrow High signal cross section
\rightarrow Large q^{2} fixed to $Q^{2}=M_{J / \psi}^{2}=9.6 \mathrm{GeV}^{2}$
\rightarrow Factorization theorem is likely reached
\rightarrow Complementary measurement for $\bar{p} p \rightarrow \gamma^{*} \pi^{0}$ \rightarrow Test of universality of TDAs

TDA measurements with PANDA ($\mathrm{J} / \Psi \Pi^{0}$)

Different background processes have been investigated
A. Three Pion Production $\bar{p} p \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0} \quad\left(\mathrm{~B} / \mathrm{S} \sim 10^{5}-10^{6}\right)$
B. Multi-pion Final States $\left(N_{\pi} \geq 4\right) \pi^{0} \pi^{0} \pi^{+} \pi, \pi^{0} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{0}$ (B/S~3-15)
C. $\bar{p} p \rightarrow J / \psi \pi^{0} \pi^{0}$ with $J / \psi \rightarrow e^{+} e^{-}$
D. Di-electron Continuum: $\bar{p} p \rightarrow \gamma^{*} \pi^{0} \rightarrow e^{+} e^{-} \pi^{0}$
E. Hadronic Decays of J / ψ
\rightarrow After a simple event selection, the dominant background is contributed by $J / \psi \pi^{0} \pi^{0}$
\rightarrow Several backgrond rejection and subtraction methods have been developed and investigated

TDA measurements with PANDA ($\mathrm{J} / \Psi \Pi^{0}$)

Signal and background contribution of fully reconstructed events after all cuts:

Phys. Rev. D 95, 032003 (2017)

TDA measurements with PANDA ($\mathrm{J} / \Psi \Pi^{0}$)

- Cross sections extracted from the fully efficiency corrected yields
- $2 \mathrm{fb}^{-1}$ integrated luminosity

Phys. Rev. D 95, 032003 (2017)

TDA measurements with PANDA ($\mathrm{J} / \Psi \Pi^{0}$)

$$
\frac{d \sigma}{d \theta_{J / \psi}^{e^{+}}} \sim 1+\cos ^{2}\left(\theta_{J / \psi}^{e^{+}}\right)
$$

Fit function: $\quad B \times\left(1+A \cos ^{2} \theta_{J / \psi}^{e^{+}}\right)$

$$
L=2 \mathrm{fb}^{-1} \rightarrow \Delta \sigma(t, u) / \sigma(t, u) \sim 5 \%-10 \%
$$

Phys. Rev. D 95, 032003 (2017)

Summary and Outlook

- PANDA is well suited to verify basic characteristics of the TDA modell with a high precision within a relatively short period of beam time
- The feasability has been studied in detail for two channels
- PANDA will enable the extraction of TDAs with high precision
- TDAs can be measured by electron scattering (JLAB) and anti-proton proton annihilation (PANDA)
\rightarrow A comparison of different channels and reactions can provide a proof for the assumed universality of TDAs

Bundesministerium
für Bildung
und Forschung

