

Backward Baryon—Anti-baryon Photoproduction at GlueX

Backward-Angle (u-channel) Physics Workshop

Hao Li

Baryon—anti-Baryon Photoproduction — Hao Li (Backward-Angle Physics Workshop, SEP 2020)

- **Overview**
 - GlueX Experiment $\gamma p \to \Lambda \overline{\Lambda} p, p \overline{p} p$
- Data Analysis
 - Detection of the Final States
 - Angular Distribution Phenomenology
 - Comparison of Regge models to approximate angular distributions
 - Multi-parameter optimization

4 ~ 11.6 GeV photon Beam Linearly polarized at coherent peak near 9 GeV

- Four polarization orientations: 0°, 90°, 45°, 135°
- Produce $\{B\bar{B}\}$ off the proton in the liquid hydrogen target

GlueX Experiment at Jefferson Lab

Detection of the Weak Decays: $\gamma p \to \Lambda \ \bar{\Lambda} \ p, \ \Lambda \to \pi^- p$, $\bar{\Lambda} \to \pi^+ \bar{p}$

van Hove Diagram for 3-body $\{B\bar{B}\}p$ Final States (CM Frame)

Longitudinal momentums in **CM Frame** represented with () and () in van Hove diagram:

• Easy to identify production modes between t-channel and u-channel

Angular Distributions of $\Lambda\bar{\Lambda}p$

Baryon—anti-Baryon Photoproduction — Hao Li (Backward-Angle Physics Workshop, SEP 2020)

Angular Distributions of $\Lambda\bar{\Lambda}p$

Baryon—anti-Baryon Photoproduction — Hao Li (Backward-Angle Physics Workshop, SEP 2020)

Angular Distributions of $\Lambda\bar{\Lambda}p$

Angular Distributions of $\Lambda\bar{\Lambda}p$ & $p\bar{p}p$

"Bank" of Reaction Mechanisms

"single Regge" model "double Regge" model t-channel u-channel **Dominant Mechanism** Λ t_1 Λ u_0 t_0 t_2 $p_{\texttt{recoil}}$ $p_{\texttt{recoil}}$ $p_{\texttt{recoil}}$ p

 $\frac{d\sigma}{dt_0} \sim \exp(b_0 t_0)$

 $\frac{d\sigma}{dt_1 dt_2} \sim \exp(b_1 t_1) \exp(b_2 t_2)$

Multiple ways define the mass of the pair:

- IM{ $\Lambda\bar{\Lambda}$ } ~ Breit-Wigner(m_R, Γ_R)
- "clustering effect" $\sim \exp[-(M_{\Lambda\bar{\Lambda}} 2m_{\Lambda})/m_c]$

Data vs MC for Single Regge (t-channel)

Data vs MC for Single Regge (u-channel)

F

-1

Data vs MC for Double Regge

Combining mechanisms

Combined MC =

"clustering effect" ~ $\exp[-(M_{\Lambda\bar{\Lambda}} - 2m_{\Lambda})/m_c]$

Five fit parameters: p_0 , b_0 , m_c , b_1 , b_2

Baryon—anti-Baryon Photoproduction — Hao Li (Backward-Angle Physics Workshop, SEP 2020)

Fit Combined MC to data with TFractionFitter

Mixed MC

Single Regge MC

SP18 Data

Fit method of the channel $\gamma p \rightarrow p \bar{p} p$ Single Regge $\vec{\gamma}_{\ \rm l}$ ×10³ PLoAP_tReduced Entries 6892304 \bar{p} 700 t_0 SP18 Data 600 Mixed MC 500 Single Regge MC $p_{\texttt{recoil}}$ Double Regge I MC 400 Double Regge II MC **Double Regge I Double Regge II** 300 200 $\vec{\gamma}$ ~ n GLUE 100 Preliminary t_1 t_1 0^L 0 . . . 0.5 2.5 3 3.5 \bar{p} \bar{p} 2 1.5 1 -(t - t(min)) of IM ($p_{Lo} \overline{p}$) t_2 t_2 $p_{\texttt{recoil}}$ $p_{\texttt{recoil}}$ pp

Fit Result of the channel $\gamma p \rightarrow p \bar{p} p$

SP18 Data
Mixed MC
Single Regge MC
Double Regge I MC
Double Regge II MC

Speculation about the asymmetry of double Regge

Conclusion

- Found a simple description with one single Regge and one double Regge mechanism to fit to the $\Lambda\bar{\Lambda}p$ final states data distributions
- The $p\bar{p}p$ reaction needs not one, but two double Regge mechanisms
- Simple model based on meson/baryon exchange mechanisms fits the data quite well

Backup slides

Fit Combined MC to data with TFractionFitter

- A better way to include correlations of variables into the fit is by 2-D histograms
- We stick to 1-D since data sizes/MC sample sizes are limited
- The list of histograms could be expanded to include more variables such as momentum, invariant mass, and Mandelstam t, for example.

Baryon—anti-Baryon Photoproduction — Hao Li (Backward-Angle Physics Workshop, SEP 2020)