

$K^+\Sigma^0$ Photoproduction at Backward Angle at GlueX Experiment

Nilanga Wickramaarachchi

Backward-Angle (u-channel) Physics Workshop

09/23/2020

Introduction

 K^+ – psuedoscalar meson with quark content $u\bar{s}$ Σ^0 – hyperon with quark content uds

 $\gamma p \to K^+ \Sigma^0$

• Mandelstam variables are defined as

$$s = (p_{\gamma} + p_p)^2$$
$$t = (p_{\gamma} - p_{K^+})^2$$
$$u = (p_p - p_{K^+})^2$$

Regge Model

- Scattering amplitude \Rightarrow exchange of Regge trajectories at high energies
- Regge trajectory \implies resonances with identical internal quantum numbers but different total angular momenta J
- Have relation $J_i = \alpha(m_i^2)$ for different masses

Regge Model

u-channel

M. Guidal, PhD thesis, DAPNIA/SPhN-96-03T, CE Saclay (1996)

Physics Motivation

for $\gamma p \rightarrow K^+ \Sigma^0$ helicity amplitudes $f_1 = f_{1+,0+}$ $f_2 = f_{1+,0-}$ $f_3 = f_{1-,0+}$ $f_4 = f_{1-,0-}$

$$f_1^{\pm} = \frac{1}{2}(f_1 \pm f_4)$$
$$f_2^{\pm} = \frac{1}{2}(f_2 \mp f_3)$$

 $f_{1-,0+}$ $f_{1-,0-}$ $f_{1-,0-}$ $f_{1}^{-}, f_{2}^{-} \rightarrow \text{unnatural parity}$ $f_{1}^{-}, f_{2}^{-} \rightarrow \text{unnatural parity}$

Nucl. Phys. B53, 197 (1973)

beam asymmetry
$$\Sigma = \left[\frac{d\sigma_{\perp}}{dt} - \frac{d\sigma_{\parallel}}{dt}\right] / \left[\frac{d\sigma_{\perp}}{dt} + \frac{d\sigma_{\parallel}}{dt}\right]$$

$$= \frac{(|f_1^+|^2 + |f_2^+|^2 - |f_1^-|^2 - |f_2^-|^2)}{(|f_1^+|^2 + |f_2^+|^2 + |f_1^-|^2 + |f_2^-|^2)}$$

- difference between cross sections for photon polarized perpendicular and parallel to reaction plane
- direct measure of type of parity exchange

Previous *u*-channel measurements

Phys. Rev. Lett. **21**, 479 (1968)

Phys. Rev. Lett. 23, 890 (1969)

$\frac{d\sigma}{du}$ vs. u measurements by SLAC

Data Analysis

- Spring 2017 data set 20% of GlueX phase 1 data
- Luminosity 20.8 pb⁻¹ in 8.2 GeV $< E_{\gamma} < 8.8$ GeV

 $\gamma p \to K^+ \Sigma^0(1193)$ $\Sigma^0 \to \Lambda \gamma$

- Select combinations of particles matching the topology of $\gamma p \to K^+ \Lambda \gamma \ (\Lambda \to \pi^- p)$
 - $-0.08 \text{ GeV}^2 < \text{Missing mass squared of all particles} < 0.08 \text{ GeV}^2$
 - Kinematic fit satisfying the conservation of energy and momentum (confidence level $>10^{-4})$
 - Kaon is constrained to be in the target region
 - Shower quality > 0.5 to remove extra showers from hadronic split-offs in forward calorimeter

Invariant masses

Phys. Rev. C 101, 065206 (2020)

$$M_{p\pi^-\gamma}$$
 vs $M_{p\pi^-}$

Invariant mass of $\Lambda\gamma$

• Events within $1.107 \,\text{GeV}/c^2 < M_{\pi^- p} < 1.125 \,\text{GeV}/c^2$

[•] Background under Σ^0 peak ~ 2%

-t distribution

• Events within 1.169 GeV/ $c^2 < M_{\Lambda\gamma} < 1.217 \,\mathrm{GeV}/c^2$

• Observe both t- and u-channel contributions

Acceptance

t-channel yield $\sim 4 \times$ u-channel yield

$$u = (p_{\text{target}} - p_{K^+})^2$$

Higher acceptance for *u*-channel

Kinematics (p vs theta) : data

• Events with no cut on -t

Kinematics for *u***-channel**

Beam asymmetry method

 σ_{pol} – cross section for a linearly polarized photon beam σ_{unpol} – unpolarized cross section

 ϕ – angle between plane parallel to the lab floor and K^+ production plane

 ϕ_{lin} – angle between photon polarization plane and lab floor

 P_{γ} – magnitude of photon beam polarization

Beam asymmetry method

cross sections for two orthogonal polarization orientations

$$\sigma_{\parallel}(\phi) = \sigma_{pol}(\phi, \phi_{lin} = 0) = \sigma_{unpol}(1 - P_{\parallel}\Sigma\cos 2\phi)$$

$$\sigma_{\perp}(\phi) = \sigma_{pol}(\phi, \phi_{lin} = 90) = \sigma_{unpol}(1 + P_{\perp}\Sigma\cos 2\phi)$$

event yields

$$Y_{\parallel}(\phi) \sim N_{\parallel} [\sigma_{unpol} A(\phi)(1 - P_{\parallel} \Sigma \cos 2\phi)] \qquad A(\phi) \Rightarrow \begin{array}{l} \text{detector} \\ \text{acceptance} \end{array}$$

$$Y_{\perp}(\phi) \sim N_{\perp} [\sigma_{unpol} A(\phi)(1 + P_{\perp} \Sigma \cos 2\phi)] \qquad A(\phi) \Rightarrow \begin{array}{l} \text{detector} \\ \text{detector} \end{array}$$

Yield Asymmetry

Yield asymmetry for u-channel

Systematics summary for *u*-channel

Study	0/90 Systematic Error	-45/45 Systematic Error
Event selection	0.050	0.040
Phase dependence	0.022	0.021
Flux normalization dependence	0.006	0.002
Background	0.004	0.004
Non-uniform acceptance	0.015	0.015
Total	0.057	0.048

• Main contribution is due to event selection

Beam asymmetry for t-channel

- Average $\Sigma = 1.00 \pm 0.05$ in the $-t = (0.1 1.4) (\text{GeV}/c)^2$ range
- $\Sigma \sim 1 \implies$ natural parity exchange with $K^*(892)$ Regge trajectory
- Results consistent with theoretical predictions
- First measurement of Σ for $\gamma p \to K^+ \Sigma^0$ beyond baryon resonance region

Beam asymmetry for *u*-channel

$-u \operatorname{bin} ((\operatorname{GeV/c})^2)$	\sum	Stat. uncert.	Syst. uncert.	Total uncert.
-u < 2.0	0.410	0.070	0.057	0.090

- u-channel result suggests exchange of both $\Sigma(J=1/2)$ and $Y^*(J=3/2)$ trajectories contribute
- There is no prediction for beam asymmetry as a function of \boldsymbol{u}

Summary

- First measurement of Σ in the exclusive reaction $\gamma p \to K^+ \Sigma^0$ beyond baryon resonance region
- Σ as a function of t is consistent with unity and model predictions
- $\Sigma = 0.41 \pm 0.09$ extracted for the u-channel production
- Results will provide important information on strangeness-exchange in photoproduction

Thank You !!

PHYSICAL REVIEW C 101, 065206 (2020)

Measurement of the photon beam asymmetry in $\vec{\gamma} p \rightarrow K^+ \Sigma^0$ at $E_{\gamma} = 8.5 \text{ GeV}$

S. Adhikari,²² A. Ali,¹⁰ M. Amaryan¹⁰,^{22,*} A. Austregesilo,³ F. Barbosa,¹⁴ J. Barlow,⁷ E. Barriga,⁷ R. Barsotti,¹² T. D. Beattie,²³ V. V. Berdnikov,¹⁷ T. Black,²⁰ W. Boeglin,⁶ W. J. Briscoe,⁸ T. Britton,¹⁴ W. K. Brooks,²⁴ B. E. Cannon,⁷ N. Cao,¹¹ E. Chudakov,¹⁴ S. Cole,¹ O. Cortes,⁸ V. Crede,⁷ M. M. Dalton,¹⁴ T. Daniels,²⁰ A. Deur,¹⁴ S. Dobbs,⁷ A. Dolgolenko,¹³ R. Dotel,⁶ M. Dugger,¹ R. Dzhygadlo,¹⁰ H. Egiyan,¹⁴ T. Erbora,⁶ A. Ernst,⁷ P. Eugenio,⁷ C. Fanelli,¹⁶ S. Fegan,⁸ A. M. Foda,²³ J. Foote,¹² J. Frye,¹² S. Furletov,¹⁴ L. Gan,²⁰ A. Gasparian,¹⁹ C. Gleason,¹² K. Goetzen,¹⁰ A. Goncalves,⁷ V. S. Goryachev,¹³ L. Guo,⁶ H. Hakobyan,²⁴ A. Hamdi,¹⁰ G. M. Huber,²³ A. Hurley,²⁸ D. G. Ireland,⁹ M. M. Ito,¹⁴ N. S. Jarvis,³ R. T. Jones,⁵ V. Kakoyan,²⁷ G. Kalicy,⁴ M. Kamel,⁶ C. Kourkoumelis,² S. Kuleshov,²⁴ I. Larin,¹⁵ D. Lawrence,¹⁴ D. I. Lersch,⁷ H. Li,³ W. Li,²⁸ B. Liu,¹¹ K. Livingston,⁹ G. J. Lolos,²³ V. Lyubovitskij,^{25,26} D. Mack,¹⁴ H. Marukyan,²⁷ V. Matveev,¹³ M. McCaughan,¹⁴ M. McCracken,³ W. McGinley,³ C. A. Meyer,³ R. Miskimen,¹⁵ R. E. Mitchell,¹² F. Nerling,¹⁰ L. Ng,⁷ H. Ni,⁸ A. I. Ostrovidov,⁷ Z. Papandreou,²³ M. Patsyuk,¹⁶ C. Paudel,⁶ P. Pauli,⁹ R. Pedroni,¹⁹ L. Pentchev,¹⁴ K. J. Peters,¹⁰ W. Phelps,⁸ E. Pooser,¹⁴ N. Qin,²¹ J. Reinhold,⁶ B. G. Ritchie,¹ L. Robison,²¹ D. Romanov,¹⁷ C. Romero,²⁴ C. Salgado,¹⁸ A. M. Schertz,²⁸ R. A. Schumacher,³ J. Schwiening,¹⁰ K. K. Seth,²¹ X. Shen,¹¹ M. R. Shepherd,¹² E. S. Smith,¹⁴ D. I. Sober,⁴ A. Somov,¹⁴ S. Somov,¹⁷ O. Soto,²⁴ J. R. Stevens,²⁸ I. I. Strakovsky,⁸ K. Suresh,²³ V. V. Tarasov,¹³ S. Taylor,¹⁴ A. Teymurazyan,²³ A. Thiel,⁹ G. Vasileiadis,² T. Whitlatch,¹⁴ N. Wickramaarachchi , 22,† M. Williams, 16 T. Xiao, 21 Y. Yang, 16 J. Zarling, 23 Z. Zhang, 29 Q. Zhou, 11 X. Zhou,²⁹ and B. Zihlmann¹⁴ (GLUEX Collaboration)