

Backward angle meson photoproduction at GLUE

Justin Stevens

- * Large acceptance detector for charged and neutral particles (many final states)
- * Orders of magnitude higher statistics than previous photoproduction experiments

Exotic J^{PC}: t-channel photoproduction

Production through t-channel meson exchange

Conventional: t-channel photoproduction

Exchange J^{PC} $1^{--}: \omega, \rho$ $1^{+-}: b, h$

- * Begin by understanding non-exotic production mechanism
- Linear photon beam polarization critical to filter out "naturality" of the exchange particle

$\gamma p \rightarrow \pi^0 p$ beam asymmetry Σ

 Beam asymmetry Σ provides insight into dominant production mechanism

$$\Sigma = \frac{|\omega + \rho|^2 - |h + b|^2}{|\omega + \rho|^2 + |h + b|^2}$$

- From experimental standpoint it's easily extended to yp→ηp
 - * No previous measurements!

π^0 and η beam asymmetries

- * Dip in multiple theory predictions not observed
- Vector exchange (Σ=1)
 dominance at this energy
- * Additional asymmetry measurements for eta, eta'
- What about backward angles (u-channel)?

Phys. Rev. C 95, 042201(R)

t and u dependence of exclusive π^0

Justin Stevens, WILLIAM \mathcal{CM} MARY 10

100E

50╞

0^{E₁/₀.1}

0.2

0.3

Smooth efficiency over range dominated by t-channel exchange

0.5

0.4

0.6

Invariant Mass (GeV)

0.7

π- beam asymmetry: t-channel

Charged pseudoscalars: more complicated *-t* dependence

Mark suggested the investigation of u-channel: beam asymmetry, dσ/du?

- * Data on ω from CLAS6 and Clifft et. al.
- Models from Laget, B.-G. Yu, et. al. (see talk this morning's talk)
- Interest in pushing to higher energies for more complete s, t, u dependence?

t-channel: Spin Density Matrix Elements

* Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \to \rho p$

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1) \cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{0} \sin^{2}\vartheta \cos 2\varphi \right)$$

$$W^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1} \sin^{2}\vartheta + \rho_{00}^{1} \cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{1} \sin^{2}\vartheta \cos 2\varphi \right)$$

$$W^{2}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2} \sin 2\vartheta \sin\varphi + \operatorname{Im}\rho_{1-1}^{2} \sin^{2}\vartheta \sin 2\varphi \right)$$

$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$
Schilling [Nucl. Phy. B, 15 (1970) 397]

 π

t-channel: Spin Density Matrix Elements

* Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \to \rho p$

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right)$$
$$W^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi \right)$$
$$W^{2}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi \right)$$
$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

Schilling [Nucl. Phy. B, 15 (1970) 397]

 Requires control of angular acceptance distributions similar to PWA

$$\ln L = \sum_{i=1}^{N} \ln I(\Omega_i) - \sum_{j=1}^{M} \ln I(\Omega_j) - \int d\Omega I(\Omega) \eta(\Omega)$$

Signal Bkgd. Accept.

MENU2019 Proceedings arXiv:1908.07275

t and u dependence: exclusive $\omega \rightarrow \pi^0 \pi^+ \pi^-$

Summary

- "Backward" angle peaks observed for π⁰, η, ω mesons, next talks show more interesting examples
- * Large acceptance allows GlueX to fully reconstruct these final states in u- and t-channel production

*** Observables:**

- * d σ /du for 3 < E_{χ} < 11.5 GeV
- * polarization (Σ and SDMEs) for 8.2 < E_{γ} < 8.8 GeV

*** Questions:**

- Which final states are most interesting from theoretical perspective? And which are simplest to interpret/model?
- * Which observables are most important?

Neutral pseudoscalars: $\Sigma \sim 1$, dominated by vector exchange

Neutral pseudoscalars: $\Sigma \sim 1$, dominated by vector exchange