Hard exclusive single charged pion electroproduction off the proton

Beam Spin Asymmetry

K. Park [HUPTI] Sep. 21, 2020

Content

- Introduction
- Theoretical approach
- Experimental approach
- Pioneering study - cross sections measurements
- Recent experimental results review (PLB2018)
- Extended study (new) - beam spin asymmetry
- Asymmetry data in this presentation (preliminary)
- Summary

Diagram \& variables

$$
\begin{aligned}
p_{P} & =(1+\xi) \hat{p}+\frac{m_{p}^{2}}{1+\xi} \hat{n} \\
p_{\gamma_{v}} & \sim-2 \xi\left(1+\frac{\Delta_{T}^{2}-m_{p}^{2}}{Q^{2}}\right) \hat{p}+\frac{Q^{2}}{2 \xi\left(1+\frac{\Delta_{T}^{2}-m_{p}^{2}}{Q^{2}}\right)} \hat{n}, \\
p_{\pi} & =(1-\xi) \hat{p}+\frac{m_{\pi}^{2}-\Delta_{T}^{2}}{1-\xi} \hat{n}+\Delta_{T} \\
p_{N} & \sim-2 \xi \frac{\Delta_{T}^{2}-m_{p}^{2}}{Q^{2}} \hat{p}+\left(\frac{Q^{2}}{2 \xi\left(1+\frac{\Delta_{T}^{2}-m_{p}^{2}}{Q^{2}}\right)}-\frac{m_{\pi}^{2}-\Delta_{T}^{2}}{1-\xi}+\frac{m_{p}^{2}}{1+\xi}\right) \hat{n}-\Delta_{T}, \\
\Delta & =-2 \xi \hat{p}+\left(\frac{m_{\pi}^{2}-\Delta_{T}^{2}}{1-\xi}-\frac{m_{p}^{2}}{1+\xi}\right) \hat{n}+\Delta_{T} .
\end{aligned}
$$

- \hat{p}, \hat{n} are the light-cone vectors ($\hat{p}^{2}=\hat{n}^{2}=0,2 \hat{p} \cdot \hat{n}=1$)
- $P=\frac{1}{2}\left(p_{P}+p_{\pi}\right)$: the average momentum of the pion and nucleon. It is collinear along z.
- $\Delta=p_{\pi}-p_{P}$: the momentum transfer.
- Δ_{T} : the transverse component of Δ (i.e. transverse component of pion momentum in the center-of-mass system.)
- $x_{i}(i=1,2,3)$: the light-cone momentum fraction of the quark i
- $\xi=-\frac{\Delta \cdot n}{2 P \cdot n}$: the skewness variable, $2 \xi=x_{1}+x_{2}+x_{3} . \xi$ describes the loss of plus-momentum of the incident proton.

(b)

- assume: one photon exchange approximation

$$
\frac{d^{5} \sigma}{d E_{f} d \Omega_{e} d \Omega_{\pi}^{*}}=\Gamma_{\nu} \cdot \frac{d^{2} \sigma}{d \Omega_{\pi}^{*}}
$$

where,

Experimental approach

$$
\begin{gathered}
\frac{d^{2} \sigma}{d \Omega_{\pi}^{*}}=\frac{p_{\pi}^{*}}{k_{\pi}^{*}}\left(\sigma_{0}+h \sqrt{2 \epsilon(1-\epsilon)} \sigma_{L T}^{\prime} \sin \theta_{\pi}^{*} \sin \phi_{\pi}^{*}\right) \\
\sigma_{0}=\sigma_{U}+\epsilon \sigma_{T T} \sin ^{2} \theta_{\pi}^{*} \cos 2 \phi_{\pi}^{*}+\sqrt{2 \epsilon(1+\epsilon)} \sigma_{L T} \sin \theta_{\pi}^{*} \cos \phi_{\pi}^{*}
\end{gathered}
$$

where,
h : beam helicity state
σ_{0} : unpolarized cross-section
$\sigma_{U}=\sigma_{T}+\epsilon \sigma_{L}$
Kinematics is completely defined by five variables $\left(Q^{2}, W, \theta_{\pi}^{*}, \phi_{\pi}^{*}\right.$, and $\left.\phi_{e}\right)$

Cross section data review

Publications 2013, 2018

K.Park et al., EPJA 49, (2013).

Transition between hadronic and parsonic picture of the strong interaction GPD regime
1 Correlations of the longitudinal momentum fraction with transfers spatial position
2 Connection to the transversely GPD DVMP: $\mathrm{N}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{NM}\right), \mathrm{M}=\pi, \rho, \phi, \ldots$ Kinematic variables: $x_{B J}, Q^{2}$,-t Black hashed area: K.Park et al., EPJA 49, (2013). Red solid line: K.Park et al., PLB 780 340, (2018).

Event selection (PLB2018)

Structure function (PLB2018)

1. A theoretical calculation (TDA) as function of $\xi \sim Q^{2} /\left(Q^{2}+2 W^{2}\right)$
2. Nucleon to Meson TDAs provide new information: correlation of partons insides of hadrons
3. Nucleon pole exchange in the u-channel contribution determinant for smaller ξ (D-term GPDs)
4. Theoretical understanding is growing up / spectral representation for πN TDA based on quadruple distribution / Factorization ansatz for the quadruple distributions with input at $\xi=1$

The bands refer to model calculations of σu in the stat sys
TDA description, black band: BLW NNLO, dark blue band: COZ, and light blue band: KS. The lower black dashed curve represents an educated guess to a fit of the higher twist cross section $\sigma L T$ and $\sigma T T$ in the TDA picture. The red curves are the predictions of Regge for bold solid: σU, dashed: $\sigma L T$, dot-dashed: $\sigma T T$.

Beam spin asymmetry

Preliminary data 2020

Event selection \& Kinematic coverage

- Electrons (e): At the trigger level by requiring a minimum amount of energy in the EC in coincidence with a signal in the CC
- Pions ($\pi+$): By a coincidence of the drift chamber (DC) and time-of-flight scintillation counter (TOF-SC) in the same sector
- Neutrons (n) : missing mass tech

Variable	Number of bins	Range	Bin size
h	2	\pm	helicity state
W	25	$1.34-2.62 \mathrm{GeV}$	with $40,50,60,80 \mathrm{MeV}$
Q^{2}	5	$1.6-4.5 \mathrm{GeV}^{2}$	varying
$\cos \theta_{\pi}^{*}$	2	$(-1: 0)$	0.5
	4	$(0:+1)$	0.25
φ_{π}^{*}	8	$0^{\circ}-360^{\circ}$	45°

Kinematical region

Kinematic range W (excitation), Q^{2} (resolution)

Momentum corrections

- Kinematic corrections : electrons and hadrons using both elastic and Bethe-Heitler (BH) event methods
- Both correction methods rely on the calculation of the fixed angles and momenta of protons in the selected event

Background subtraction

Sophisticated study for BG function determination
Function : as simple as possible
Parameter/Range : case-by-case
Peak: the skewness Gaussian BG: convoluted exponential

Beam spin asymmetry

$$
\begin{aligned}
& A_{L U}\left(W, Q^{2}, \cos \theta^{*}, \varphi^{*}\right)=\left(\frac{N^{+}}{N_{\text {total }}^{+}}-\frac{N^{-}}{N_{\text {total }}^{-}}\right)\left(\frac{N^{+}}{N_{\text {total }}^{+}}+\frac{N^{-}}{N_{\text {total }}^{-}}\right) \\
& A_{L U}=\frac{\alpha \sin \varphi^{*}}{1+\beta \cos \varphi^{*}+\gamma \cos 2 \varphi^{*}} .
\end{aligned}
$$

Moment extraction and comparison

Difference among cases $\quad Q^{2}\left(\mathrm{GeV}^{2}\right)=3.15$

$\sin \phi$ moment extraction

Color curves:
Blue solid lines: MAID2007
Red solid lines: JANR

$\sin \varphi$ moment trend as a function of $\cos \theta^{*}$

- A single bin of $Q^{2}=1.8 \mathrm{GeV}^{2}$
- A simple fit for guidance
- $A \sin (x)$,where $x=\cos \theta^{*}$

$\boldsymbol{\operatorname { s i n }} \varphi \mathbf{m o m e n t}$ trend as a function of $\mathbf{- t}$ (compare to W, Q2 integrated result: S. Deihl's data, elf)

$\sin \varphi$ moment trend as a function of $-\mathbf{t}$ (compare to GK model)

Solid blue curves: GK model

Polarized structure function

$$
\sigma_{L T}^{\prime}=\frac{A_{L U}^{\sin \varphi}\left(\sigma_{T}+\epsilon \sigma_{L}\right)}{\sqrt{2 \epsilon(1-\epsilon)}}\left[1+\frac{1}{2} \frac{\epsilon \sigma_{T T}}{\sigma_{T}+\epsilon \sigma_{L}}\right]^{-1}
$$

Combine data: 2015 and This analysis

Red solid circles : This analysis
Black circles : 2008
Blue solid lines: MAID2007

Polarized structure function $\left(\sigma_{L T}^{\prime}\right)$

Polarized structure function

Blue curves:MAID2007
Black solid circles

Combine data: 2013 and This analysis

Near forward angles

Solid curves: GK model

K. Tezgin

Near backward angles

Polarized structure function

Black solid circles

Blue curves:MAID2007

Combine data: 2018 and This analysis

Near forward angles
Near backward angles

Solid (red, blue) curves : GK model

K. Tezgin

Polarized structure function at near backward angles (TDA model)

Black solid circles

Open blue circles

Summary

- The beam spin asymmetry $\left(A_{L U}\right)$ for the exclusive single $\pi+$ electroproduction was obtained from the e1-6 data set where 5.754 GeV

$$
W=1.34-2.62 \mathrm{GeV} \quad Q^{2}=1.6-4.5 \mathrm{GeV}^{2}
$$

- A significant ϕ^{*}-dependence of $A_{L U}^{\sin \phi}$ above $\langle\mathrm{W}\rangle=1.7 \mathrm{GeV}$ was observed at large angle $\left(\cos \theta^{*}<0\right)$, Almost no dependence on W was observed at very forward angles
- Sign change of $A_{L U}^{\sin \phi}$ has been confirmed in the fine kinematics
- Polarized structure function at near forward and backward have been extracted and compared to the model calculations (GPD, TDA)
- Combine study of the GPD, TDA will provide more insight (universality) of nucleon structure function in terms of the collinear factorization

Thank you for your attention

Legendre moment vs. W (compare to MAID2017) $\sigma_{T}+\epsilon \sigma_{L}=\sum_{l=0}^{n} D_{l}^{T_{L}+L} P_{l}\left(\cos \theta^{*}\right)$,

$$
\sigma_{L T}=\sin \theta^{*} \sum_{l=0}^{n-1} D_{l}^{L T} P_{l}\left(\cos \theta^{*}\right)
$$

$$
\sigma_{T T}=\sin ^{2} \theta^{*} \sum_{l=0}^{n-2} D_{l}^{T T} P_{l}\left(\cos \theta^{*}\right), \text { and }
$$

$$
\sigma_{L T}^{\prime}=\sin \theta^{*} \sum_{l=0}^{n-1} D_{l}^{L T^{\prime}} P_{l}\left(\cos \theta^{*}\right)
$$

