Hard exclusive single charged pion electroproduction off the proton

Beam Spin Asymmetry

K. Park [HUPTI] Sep. 21, 2020

Content

- Introduction
- Theoretical approach
- Experimental approach
- Pioneering study cross sections measurements
- Recent experimental results review (PLB2018)
- Extended study (new) beam spin asymmetry
- Asymmetry data in this presentation (preliminary)
- Summary

Diagram & variables

$$\begin{split} p_P &= (1+\xi)\hat{p} + \frac{m_p^2}{1+\xi}\hat{n} \;, \\ p_{\gamma_v} &\sim -2\xi \Big(1 + \frac{\Delta_T^2 - m_p^2}{Q^2}\Big)\hat{p} + \frac{Q^2}{2\xi (1 + \frac{\Delta_T^2 - m_p^2}{Q^2})}\hat{n} \;, \\ p_{\pi} &= (1-\xi)\hat{p} + \frac{m_{\pi}^2 - \Delta_T^2}{1-\xi}\hat{n} + \Delta_T \;, \\ p_N &\sim -2\xi \frac{\Delta_T^2 - m_p^2}{Q^2}\hat{p} + \Big(\frac{Q^2}{2\xi (1 + \frac{\Delta_T^2 - m_p^2}{Q^2})} - \frac{m_{\pi}^2 - \Delta_T^2}{1-\xi} + \frac{m_p^2}{1+\xi}\Big)\hat{n} - \Delta_T \;, \\ \Delta &= -2\xi\hat{p} + \Big(\frac{m_{\pi}^2 - \Delta_T^2}{1-\xi} - \frac{m_p^2}{1+\xi}\Big)\hat{n} + \Delta_T \;. \end{split}$$

- \hat{p} , \hat{n} are the light-cone vectors ($\hat{p}^2 = \hat{n}^2 = 0$, $2\hat{p} \cdot \hat{n} = 1$)
- $P = \frac{1}{2}(p_P + p_\pi)$: the average momentum of the pion and nucleon. It is collinear along z.
- $\Delta = p_{\pi} p_{P}$: the momentum transfer.
- Δ_T : the transverse component of Δ (i.e. transverse component of pion momentum in the center-of-mass system.)
- $x_i(i=1,2,3)$: the light-cone momentum fraction of the quark i
- $\xi = -\frac{\Delta \cdot n}{2P \cdot n}$: the skewness variable, $2\xi = x_1 + x_2 + x_3$. ξ describes the loss of plus-momentum of the incident proton.

assume: one photon exchange approximation

$$rac{d^5\sigma}{dE_f d\Omega_e d\Omega_\pi^*} = \Gamma_
u \cdot rac{d^2\sigma}{d\Omega_\pi^*}$$

where,

$$\Gamma_{\nu}$$
:virtual photon flux: $\frac{\alpha}{2\pi^2Q^2} \frac{(W^2 - M_p^2)E_f}{2M_pE_e} \frac{1}{1-\epsilon}$,

 ϵ : virtual photon polarization: $\left(1+2\left(1+rac{
u^2}{Q^2}
ight) an^2 rac{ heta_e}{2}
ight)^{-1}$

Experimental approach

$$\frac{d^2\sigma}{d\Omega_\pi^*} = \frac{p_\pi^*}{k_\pi^*} \left(\sigma_0 + h\sqrt{2\epsilon(1-\epsilon)}\sigma_{LT}'\sin\theta_\pi^*\sin\phi_\pi^* \right)$$

$$\sigma_0 = \sigma_U + \epsilon \sigma_{TT} \sin^2 \theta_\pi^* \cos 2\phi_\pi^* + \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT} \sin \theta_\pi^* \cos \phi_\pi^*$$

where,

h: beam helicity state

 σ_0 : unpolarized cross-section

$$\sigma_U = \sigma_T + \epsilon \sigma_L$$

Kinematics is completely defined by five variables $(Q^2, W, \theta_{\pi}^*, \phi_{\pi}^*, and \phi_e)$

Cross section data review

Publications 2013, 2018

Transition between hadronic and parsonic picture of the strong interaction GPD regime

- Correlations of the longitudinal momentum fraction with transfers spatial position
- Connection to the transversely GPD DVMP: N(e,e'NM), $M=\pi$, ρ , ϕ , ...

Kinematic variables: x_{BJ} , Q^2 , -t

Black hashed area: K.Park et al., EPJA 49, (2013).

Red solid line: K.Park et al., PLB 780 340, (2018).

Event selection (PLB2018)

Structure function (PLB2018)

- 1. A theoretical calculation (TDA) as function of $\xi \sim Q^2/(Q^2+2W^2)$
- 2. Nucleon to Meson TDAs provide new information: correlation of partons insides of hadrons
- 3. Nucleon pole exchange in the u-channel contribution determinant for smaller ξ (D-term GPDs)
- 4. Theoretical understanding is growing up / spectral representation for πN TDA based on quadruple distribution / Factorization ansatz for the quadruple distributions with input at $\xi=1$

The bands refer to model calculations of σu in the stat sys

TDA description, black band: BLW NNLO, dark blue band: COZ, and light blue band: KS. The lower black dashed curve represents an educated guess to a fit of the higher twist cross section σLT and σTT in the TDA picture. The red curves are the predictions of Regge for bold solid: σU , dashed: σLT , dot-dashed: σTT .

Beam spin asymmetry

Preliminary data 2020

Event selection & Kinematic coverage

- **Electrons (e):** At the trigger level by requiring a minimum amount of energy in the EC in coincidence with a signal in the CC
- **Pions** (π +): By a coincidence of the drift chamber (DC) and time-of-flight scintillation counter (TOF-SC) in the same sector
- Neutrons (n): missing mass tech

Variable	Number of bins	Range	Bin size
h	2	±	helicity state
W	25	$1.34 - 2.62 \; \mathrm{GeV}$	varying with 40, 50, 60, 80 $\rm MeV$
Q^2	5	$1.6-4.5~\rm GeV^2$	varying
$\cos heta_\pi^*$	2	(-1:0)	0.5
	4	(0:+1)	0.25
φ_{π}^*	8	$0^{\circ} - 360^{\circ}$	45°

Kinematical region

Kinematic range W (excitation), Q2(resolution)

Momentum corrections

- Kinematic corrections: electrons and hadrons using both elastic and Bethe-Heitler (BH) event methods
- Both correction methods rely on the calculation of the fixed angles and momenta of protons in the selected event
- 1. We equated the beam energy to the energy as measured by the Hall A (elastic scattering and energy measurement in the arcs). Both measurements agreed within less than 0.1% accuracy.
- 2. The effect of mini-torus to main torus field was of the order of O(1%) in momentum and O(1 mrad) in angles.
- 3. The particle's polar angle were reconstructed correctly for scattering angles greater than 35.
- 4. Assumed that the angle corrections were independent of the particle's charge.

Background subtraction

Sophisticated study for BG function determination Function: as simple as possible

Parameter/Range : case-by-case

Peak: the skewness Gaussian BG: convoluted exponential

Beam spin asymmetry

$$A_{LU}(W, Q^2, \cos \theta^*, \varphi^*) = \left(\frac{N^+}{N_{total}^+} - \frac{N^-}{N_{total}^-}\right) \left(\frac{N^+}{N_{total}^+} + \frac{N^-}{N_{total}^-}\right) \left(\frac{N^+}{N_{total}^+} + \frac{N^-}{N_{total}^-}\right)$$

$$A_{LU} = \frac{\alpha \sin \varphi^*}{1 + \beta \cos \varphi^* + \gamma \cos 2\varphi^*}$$

Moment extraction and comparison

sin¢ moment extraction

W=1.64 GeV, Q2=2.6 GeV2

 χ^2 distribution

Color curves:

Blue solid lines: MAID2007

Red solid lines: JANR

$\sin \varphi$ moment trend as a function of $\cos \theta^*$

- A single bin of $Q^2 = 1.8 \text{ GeV}^2$
- A simple fit for guidance

• $A \sin(x)$, where $x = \cos \theta^*$

 $\sin \varphi$ moment trend as a function of -t (compare to W, Q2 integrated result: S. Deihl's data, elf)

$\sin\varphi$ moment trend as a function of -t (compare to GK model)

Polarized structure function

$$\sigma'_{LT} = \frac{A_{LU}^{\sin\varphi}(\sigma_T + \epsilon\sigma_L)}{\sqrt{2\epsilon(1 - \epsilon)}} \left[1 + \frac{1}{2} \frac{\epsilon\sigma_{TT}}{\sigma_T + \epsilon\sigma_L} \right]^{-1}$$

Combine data: 2015 and This analysis

Polarized structure function (σ'_{LT})

Red solid circles: This analysis

Black circles: 2008

Blue solid lines: MAID2007

Polarized structure function

Combine data: 2013 and This analysis

??

Near forward angles

Solid curves: GK model

K. Tezgin

Near backward angles

Polarized structure function

Black solid circles

Combine data: 2018 and This analysis

Near forward angles

Near backward angles

Solid (red, blue) curves: GK model

K. Tezgin

Blue curves: MAID2007

Polarized structure function at near backward angles (TDA model)

Summary

• The beam spin asymmetry (A_{LU}) for the exclusive single π + electroproduction was obtained from the e1-6 data set where 5.754 GeV

$$W = 1.34 - 2.62 \text{ GeV}$$
 $Q^2 = 1.6 - 4.5 \text{ GeV}^2$

- A significant ϕ^* -dependence of $A_{LU}^{\sin\phi}$ above $\langle W \rangle = 1.7$ GeV was observed at large angle ($\cos\theta^* < 0$), Almost no dependence on W was observed at very forward angles
- Sign change of $A_{LU}^{\sin\phi}$ has been confirmed in the fine kinematics
- Polarized structure function at near forward and backward have been extracted and compared to the model calculations (GPD, TDA)
- Combine study of the GPD, TDA will provide more insight (universality) of nucleon structure function in terms of the collinear factorization

Thank you for your attention

Legendre moment vs. W (compare to MAID2017)
$$\sigma_T + \epsilon \sigma_L = \sum_{l=0}^{n} D_l^{T+L} P_l(\cos \theta^*)$$
,

