Backward timelike Compton Scattering

$$
\begin{gathered}
\gamma N \rightarrow N^{\prime} \gamma^{*}\left(Q^{\prime 2}\right) \rightarrow N^{\prime}\left(e^{+} e^{-}\right) \\
\text {or } \\
\text { When and where does the proton emit a photon? }
\end{gathered}
$$

Real or quasi-real photoproduction.
JLab, EIC or Ultraperipheral collisions in proton/nucleus collisions
Work in progress with K Semenov-Tian-Shansky and L Szymanowski
B. Pire, CPHT, CNRS, Ecole polytechnique, Palaiseau

Let us (try to) be honest (and modest)!

Status of forward meson electroproduction (QCD)

- QCD factorization " proven " for $\gamma_{L}^{*} N \rightarrow \pi N^{\prime}$

$$
\text { BUT } \sigma_{T}^{\gamma^{*} N \rightarrow \pi N^{\prime}} \text { dominant }
$$

$-\sigma_{T}$ explained (G.K., S.L et al)

BUT with twist 3 amplitudes with end point divergences to be cured "by hand"!
$-\gamma_{T}^{*} N \rightarrow \rho_{T} N^{\prime}$ proven to be zero at leading twist (and
$\gamma_{L}^{*} N \rightarrow \rho_{T} N^{\prime}$ non-factorizable)

$$
\text { BUT } \sigma^{\gamma^{*} N \rightarrow \rho_{T} N^{\prime}} \text { sizeable! }
$$

Why do we insist on QCD colinear factorization?

Forward DVCS and TCS

(a)
$q^{2}=-Q^{2}<0$

(b)

$$
q^{\prime 2}=+Q^{\prime 2}>0
$$

THE TWO MOST SIMPLE PROCESSES to access GPDs Many experiments on DVCS
\rightarrow success story for GPDs and for collinear QCD factorization in exclusive processes QCD part known at NLO

Kinematical (mass and $t \neq 0$) higher twist effects under control !
New experimental data coming soon on TCS from CLAS

Forward DVCS and TCS

Helicity amplitudes in terms of Compton form factors

$$
\begin{aligned}
& \mathcal{H}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} d x T^{q}\left(x, \xi, Q^{2}\right) H^{q}\left(x, \xi, Q^{2}\right)+\int_{-1}^{1} d x T^{g}\left(x, \xi, Q^{2}\right) H^{g}\left(x, \xi, Q^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { at LO: } \mathcal{H}_{T C S}=\mathcal{H}_{D V C S}^{*} ; \tilde{\mathcal{H}}_{T C S}=-\tilde{\mathcal{H}}_{D V C S}^{*} \\
& \text { at NLO } \mathcal{H}_{T C S}=\mathcal{H}_{D V C S}^{*}-i \pi Q^{2} \frac{d}{d Q^{2}} \mathcal{H}_{D V C S}^{*} \\
& \tilde{\mathcal{H}}_{T C S}=-\tilde{\mathcal{H}}_{D V C S}^{*}+i \pi Q^{2} \frac{d}{d Q^{2}} \tilde{\mathcal{H}}_{D V C S}^{*}
\end{aligned}
$$

Difference between DVCS and TCS \leftrightarrow QCD evolution of GPDs

Backward DVCS and Backward TCS

Backward photon electroproduction \leftrightarrow Backward lepton pair photoproduction

Small $-u$ i.e. Large $-t$
i.e. backward kinematics (in γN CMS)
and
large Q^{2} to access quark and gluon level
large s to avoid resonance effects.

Nucleon to meson TDAs \rightarrow Nucleon to photon TDAs

Remember Kirill's presentation of $N \pi$ TDAs

Same Operator

$\widehat{O}_{\rho \tau \chi}^{u u d}\left(\lambda_{1} n, \lambda_{2} n, \lambda_{3} n\right)=\varepsilon_{c_{1} c_{2} c_{3}} u_{\rho}^{c_{1}^{\prime}}\left(\lambda_{1} n\right) W^{c_{1}^{\prime} c_{1}}\left[\lambda_{1}, \lambda_{2}\right] u_{\tau}^{c_{2}^{\prime}}\left(\lambda_{2} n\right) W^{c_{2}^{\prime} c_{2}}\left[\lambda_{2}, \lambda_{3}\right] d_{\chi}^{c_{3}^{\prime}}\left(\lambda_{3} n\right) W^{c_{3}^{\prime} c_{3}}\left[\lambda_{3}, \lambda_{1}\right]$ but different matrix elements (helicity structure similar to $N \rightarrow \rho_{T}$)

Crossing : Nucleon to photon TDAs \rightarrow Photon to Nucleon TDAs

$$
\begin{gathered}
V_{i}^{N \gamma}\left(x_{i}, \xi, u\right)=V_{i}^{\gamma N}\left(-x_{i},-\xi, u\right) ; A_{i}^{N \gamma}\left(x_{i}, \xi, u\right)=A_{i}^{\gamma N}\left(-x_{i},-\xi, u\right) \\
T_{i}^{N \gamma}\left(x_{i}, \xi, u\right)=T_{i}^{\gamma N}\left(-x_{i},-\xi, u\right)
\end{gathered}
$$

Nucleon to photon TDAs

16 TDAs $\rightarrow 4$ TDAs at $\Delta_{T}=0$ (denoting $\Delta^{2}=u$) :

Fourier transformed matrix element of the $\psi^{u} \psi^{u} \psi^{d}$ operator, decomposed on leading twist Dirac structures

$$
\begin{aligned}
& 4 \mathcal{F}\left\langle V\left(p_{V}, s_{V}\right)\right| \widehat{O}_{\rho \tau \chi}^{u u d}\left(\lambda_{1} n, \lambda_{2} n, \lambda_{3} n\right)\left|N^{p}\left(p_{N}, s_{N}\right)\right\rangle \\
& =\delta\left(x_{1}+x_{2}+x_{3}-2 \xi\right) \times m_{N}\left[\sum_{\substack{r=1 \varepsilon, 1 \tau, 2,2 \tau}}\left(v_{\Upsilon}^{V N}\right)_{\rho \tau, \chi} V_{\Upsilon}^{V N}\left(x_{1}, x_{2}, x_{3}, \xi, \Delta^{2} ; \mu^{2}\right)\right.
\end{aligned}
$$

Dirac structure \leftrightarrow helicity states of the three quarks

16 TDAs $\rightarrow 4$ TDAs surviving at $\Delta_{T}=0$

$$
\begin{aligned}
& \left(v_{1 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=(\hat{p} C)_{\rho \tau}\left(\gamma^{5} \widehat{\mathcal{E}}^{*} U^{+}\right)_{\chi} \text {; } \\
& \left(v_{1 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-1}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)(\hat{p} C)_{\rho \tau}\left(\gamma^{5} U^{+}\right)_{\chi} ; \\
& \left(v_{2 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-1}(\hat{p} C)_{\rho \tau}\left(\gamma^{5} \sigma^{\Delta_{T} \mathcal{E}^{*}} U^{+}\right)_{\chi} ; \\
& \left(a_{1 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left(\hat{\mathcal{E}}^{*} U^{+}\right)_{\chi} \text {; } \\
& \left(v_{2 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-2}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)(\hat{p} C)_{\rho \tau}\left(\gamma^{5} \hat{\Delta}_{T} U^{+}\right)_{\chi} ; \\
& \left(a_{2 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-1}\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left(\sigma^{\Delta_{T} \mathcal{E}^{*}} U^{+}\right)_{\chi} \text {; } \\
& \left(a_{1 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-1}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left(U^{+}\right)_{\chi} ; \\
& \left(a_{2 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-2}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left(\widehat{\Delta}_{T} U^{+}\right)_{\chi} ; \\
& \left(t_{1 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=\left(\sigma_{p \lambda} C\right)_{\rho \tau}\left(\gamma_{5} \sigma^{\lambda \mathcal{E}^{*}} U^{+}\right)_{\chi} ; \\
& \left(t_{2 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=\left(\sigma_{p \mathcal{E}} C\right)_{\rho \tau}\left(\gamma_{5} U^{+}\right)_{\chi} \text {; } \\
& \left(t_{3 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-1}\left(\sigma_{p \Delta_{T}} C\right)_{\rho \tau}\left(\gamma_{5} \widehat{\mathcal{E}}^{*} U^{+}\right)_{\chi} ; \\
& \left(t_{4 \mathcal{E}}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-1}\left(\sigma_{p \mathcal{E}} C\right)_{\rho \tau}\left(\gamma_{5} \widehat{\Delta}_{T} U^{+}\right)_{\chi} ; \\
& \left(t_{1 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-1}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)\left(\sigma_{p \lambda} C\right)_{\rho \tau}\left(\gamma_{5} \gamma^{\lambda} U^{+}\right)_{\chi} \text {; } \\
& \left(t_{2 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-2}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)\left(\sigma_{p \lambda} C\right)_{\rho \tau}\left(\gamma_{5} \sigma^{\lambda \Delta_{T}} U^{+}\right)_{\chi} ; \\
& \left(t_{3 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-2}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)\left(\sigma_{p \Delta_{T}} C\right)_{\rho \tau}\left(\gamma_{5} U^{+}\right)_{\chi} \\
& \left(t_{4 T}^{V N}\right)_{\rho \tau, \chi}=m_{N}^{-3}\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)\left(\sigma_{p \Delta_{T}} C\right)_{\rho \tau}\left(\gamma_{5} \widehat{\Delta}_{T} U^{+}\right)_{\chi} ;
\end{aligned}
$$

Helicity content

At $\Delta_{T}=0$, helicity conservation $\rightarrow T_{\uparrow \downarrow, \downarrow}^{\uparrow \rightarrow \uparrow}, T_{\downarrow \uparrow, \downarrow}^{\uparrow \rightarrow \uparrow}, T_{\downarrow \downarrow, \uparrow}^{\uparrow \rightarrow \uparrow}, T_{\uparrow \uparrow, \uparrow}^{\uparrow \rightarrow \downarrow} \neq 0\left(T_{u u, d}^{N \rightarrow \gamma}\right)$

$$
\begin{aligned}
V_{1 \mathcal{E}}^{p \gamma} & =\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left(T_{\uparrow \downarrow, \downarrow}^{\uparrow \rightarrow \uparrow}+T_{\downarrow \uparrow, \downarrow}^{\uparrow \rightarrow}\right) ; \\
A_{1 \mathcal{E}}^{p \gamma} & =-\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left(T_{\uparrow \downarrow, \uparrow}^{\uparrow \rightarrow \uparrow}-T_{\downarrow \uparrow, \uparrow}^{\uparrow \rightarrow \uparrow}\right) ; \\
T_{1 \mathcal{E}}^{p \gamma} & =-\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left[T_{\downarrow \downarrow, \uparrow}^{\uparrow \rightarrow \uparrow}+T_{\uparrow \uparrow, \uparrow}^{\uparrow \rightarrow}\right] ; \\
T_{2 \mathcal{E}}^{p \gamma} & =-\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left[T_{\downarrow \downarrow, \uparrow}^{\uparrow \rightarrow}-T_{\uparrow \uparrow, \uparrow}^{\uparrow \rightarrow}\right] .
\end{aligned}
$$

New physics information on
density probabilities for helicity configurations when a proton emits a photon

Information on "is the nucleon brighter when u-quarks have equal helicities ?"

Helicity content-2

At $\Delta_{T} \neq 0$: counting Δ_{T} factors \leftrightarrow orbital angular momentum contribution to nucleon spin :
Δ_{T}^{1} in Dirac structure \leftrightarrow one unit of orbital angular momentum
Δ_{T}^{2} in Dirac structure \leftrightarrow two units of orbital angular momentum

$$
\Delta_{T}^{3} \text { in } t_{4} \text { implies } L=3 \quad: \quad T_{4 \mathcal{E}}^{p \gamma} \rightarrow T_{\downarrow \downarrow \downarrow \downarrow}^{\uparrow \rightarrow \downarrow}
$$

New physics information on

density probabilities for orbital angular momentum contributions when a proton emits a photon

Impact picture Nucleon to photon TDAs

Remember Kirill's presentation of $N \pi$ TDAs
Fourier transform to impact parameter : $\Delta_{T} \rightarrow b_{T}$

Where in the transverse plane does the nucleon emit a photon?

VDM prediction for photon to Nucleon TDAs

$V_{i}^{\gamma N}=\frac{e}{f_{\rho}} V_{i}^{\rho_{T} N}+\frac{e}{f_{\omega}} V_{i}^{\omega_{T} N}+\frac{e}{f_{\phi}} V_{i}^{\phi_{T} N}{ }_{\left(\frac{e^{2}}{f_{\rho}}\right.} \approx \frac{\alpha_{\omega},}{2.6}, \frac{e^{2}}{f_{j}} \approx \frac{\alpha_{\omega}}{25}$, forget ϕ contribution)
$V_{i}^{\rho N}, V_{i}^{\omega N}$ discussed and modelled in BP, Semenov-Tian-Shansky, Szymanowski, PRD 91
Checkpoint : experimental data on backward ω at Hall C : Li et al, PRL (2019)

But there is different physics in the TDA vs in the VDM model!
VDM : how much does a photon couple "softly" to a nucleon
TDA : how much does a nucleon emit a photon when the 3 quarks are squeezed? (in ERBL)

Amplitude calculation

$$
\begin{gathered}
\mathcal{M}^{\gamma N \rightarrow \gamma^{\prime}\left(\varepsilon^{\mu}, q\right) N^{\prime}}\left(Q^{2}, \xi, t\right) \approx \bar{u}\left(N^{\prime}\right) \widehat{\varepsilon}(q) u(N) \int d x_{i} d y_{i} D A\left(y_{i}, Q^{2}\right) T_{H}\left(x_{i}, y_{i}, Q^{2}\right) T D A\left(x_{i}, \xi, u, Q^{2}\right) \\
D A\left(y_{i}, Q^{2}\right)=\text { proton distribution amplitude }
\end{gathered}
$$

T_{H} : hard scattering amplitude, calculated in the collinear approximation (same hard amplitude as for PANDA process $\bar{N} N \rightarrow \gamma^{*} \pi$)
e.g. $D A\left(y_{i}\right) T_{H 2} T D A\left(x_{i}\right)=-\frac{4}{3} \frac{\mathcal{T}^{\mathcal{D} \mathcal{A}}\left(y_{i}\right) \mathcal{T}^{\tau \mathcal{D} \mathcal{A}}\left(x_{i}\right)}{\left(x_{1}+i \epsilon\right)\left(2 \xi-x_{2}+i \epsilon\right)\left(x_{3}+i \epsilon\right) y_{1}\left(1-y_{2}\right) y_{3}}+20$ other diagrams (At NLO, interesting analytical property $\log \left(Q^{2}\right) \rightarrow \log \left(Q^{\prime 2}\right)-i \pi$)

TESTS of the validity of the picture

Scaling law for the amplitude : $\mathcal{M}\left(Q^{2}, \xi\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)^{2}}{Q^{4}}$
Dominance of the transverse polarization of the virtual photon
\rightarrow specific angular distribution of the lepton pair in its rest frame :

$$
\frac{d \sigma\left(p \bar{p} \rightarrow l^{+} l^{-} \pi\right)}{\sigma d \theta} \sim 1+\cos ^{2} \theta
$$

Cross section

Order of magnitude estimate : multiply ρ electroproduction predictions by $\frac{e^{2}}{f_{\rho}^{2}} \approx \frac{\alpha_{a m}}{2.6}$

deduced from model by BP, Semenov-Tian-Shansky, Szymanowski, PRD 91
To get $\frac{d \sigma^{\gamma N \rightarrow e}+e^{-N^{\prime}}}{d \Omega d Q^{\prime 2} d \cos \theta}$ multiply by $\frac{2 \alpha_{e m}\left(1+\cos ^{2} \theta\right)}{\pi Q^{\prime 2}}$

Bethe Heitler contribution

one should not forget the QED (Bethe Heitler) process

Figure 6: The Feynman diagrams for the Bethe-Heitler amplitude.

$$
\begin{gathered}
\frac{d \sigma_{B H}}{d Q^{\prime 2} d t d(\cos \theta) d \varphi}=\frac{\alpha_{e m}^{3}}{4 \pi\left(s-M^{2}\right)^{2}} \frac{\beta}{-t L}\left[\left(F_{1}^{2}-\frac{t}{4 M^{2}} F_{2}^{2}\right) \frac{A}{-t}+\left(F_{1}+F_{2}\right)^{2} \frac{B}{2}\right] \\
A=\left(s-M^{2}\right)^{2} \Delta_{T}^{2}-t a(a+b)-M^{2} b^{2}-t\left(4 M^{2}-t\right) Q^{\prime 2} \\
+\frac{m_{\ell}^{2}}{L}\left[\left\{\left(Q^{\prime 2}-t\right)(a+b)-\left(s-M^{2}\right) b\right\}^{2}+t\left(4 M^{2}-t\right)\left(Q^{\prime 2}-t\right)^{2}\right] \\
B=\left(Q^{\prime 2}+t\right)^{2}+b^{2}+8 m_{\ell}^{2} Q^{\prime 2}-\frac{4 m_{\ell}^{2}\left(t+2 m_{\ell}^{2}\right)}{L}\left(Q^{\prime 2}-t\right)^{2} . \\
a=2\left(k-k^{\prime}\right) \cdot p^{\prime}, \quad b=2\left(k-k^{\prime}\right) \cdot\left(p-p^{\prime}\right) \\
L=\left[(q-k)^{2}-m_{\ell}^{2}\right]\left[\left(q-k^{\prime}\right)^{2}-m_{\ell}^{2}\right]=\frac{\left(Q^{\prime 2}-t\right)^{2}-b^{2}}{4} .
\end{gathered}
$$

Dominant for forward TCS ; (hopefully) negligible for backward TCS
t small, $\frac{F_{1}(t)}{t} \approx \frac{1}{t}$
t large, $\frac{F_{1}(t)}{t} \approx 1 / t^{3}$

Forward peak but no backward peak!

Bethe Heitler cross-section for DVCS

thanks to Garth Huber

Corresponding estimates for the TCS case soon to come.

$\pi \pi$ background

Maybe important especially near $\theta=0, \pi$.
Partly known through $\bar{p} p \rightarrow \pi^{+} \pi^{-}$data

Fig. 8. Regge approach versus Quark interchange model [2] for $\bar{p} p \rightarrow \pi^{-} \pi^{+}$at $s=13.54 \mathrm{GeV}^{2}$. Red dashed line: Quark interchange model; black solid line : Regge approach model.
J. Van de Wiele and S. Ong, Eur. Phys. J. A 46 (2010), 291-298

Ways out :

- improve electron identification
- use muon channel with muon identification
- cut in θ : near $\frac{\pi}{2}, \pi \pi$ cross section decreases like $\left(1 / Q^{\prime 2}\right)^{8}!$

Conclusion

The photon content of the nucleon has already been questioned :

This "photon in the proton" PDF is similar to quark in the proton PDFs.

(b) Parton level computation.

The Nucleon to photon TDA goes deeper in this quest. Understanding the brightness of the nucleon is worth the effort!

Why do we insist on QCD colinear factorization ?
because if QCD is right, it is the BEST way to access the nucleon structure but obviously we need theoretical progresses
and
precise and various experimental data
NOW AT JLab and UPCs at RHIC and LHC, SOON at PANDA...
LATER at EIC!
THANK YOU for your attention

BACK-UP SLIDES

Dispersion relations for the Compton amplitude

$$
\begin{aligned}
& \gamma^{(*)}\left(q_{1}\right)+N\left(p_{1}\right) \rightarrow \gamma^{(*)}\left(q_{2}\right)+N\left(p_{2}\right) \\
& \nu_{t}=\frac{s-u}{4 m_{N}} ; \quad \nu_{u}=\frac{t-s}{4 m_{N}}
\end{aligned}
$$

- The subtracted DR in ν_{t} :

$$
\mathcal{H}\left(\nu_{t}, t \mid Q_{1}^{2}, Q_{2}^{2}\right) \stackrel{\text { d.v. }}{=} \mathcal{H}_{0}\left(t \mid Q_{1}^{2}, Q_{2}^{2}\right)+\frac{1}{\pi} \int_{\nu_{\text {cut }}}^{\infty} \frac{d \nu_{t}^{\prime}}{\nu_{t}^{\prime}} \frac{2 \nu_{t}^{2}}{\nu_{t}^{\prime 2}-\nu_{t}^{2}-i \epsilon} \operatorname{Im} \mathcal{H}\left(\nu_{t}^{\prime}, t \mid Q_{1}^{2}, Q_{2}^{2}\right) .
$$

- A similar subtracted DR can be written ν_{u}.

DR in ν_{t} within scaling variables in the near-forward regime $\left(\vartheta \simeq \frac{q_{1}^{2}-q_{2}^{2}}{q_{1}^{2}+q_{2}^{2}}\right)$:

$$
\mathcal{H}(\xi, t \mid \vartheta)=\frac{1}{\pi} \int_{0}^{1} d \xi^{\prime} \frac{2 \xi^{\prime}}{\xi^{2}-\xi^{\prime 2}-i \epsilon} \operatorname{Im} \mathcal{H}\left(\xi^{\prime}, t \mid \vartheta\right)+\underbrace{\mathcal{H}(t \mid \vartheta)}_{1 \text { n/41.0) }}
$$

Dispersive approach in forward and backward scaling regimes

- DVCS case. GPD sum rule 0 . Teryaev' 05 for the D-term FF:

$$
4 D(t) \stackrel{\mathrm{LO}}{=} \int_{0}^{1} d x \frac{2 x}{x^{2}-\xi^{2}}\left[H^{(+)}(x, x, t)-H^{(+)}(x, \xi, t)\right] .
$$

- D-term FF encodes a bulk of nucleon's mechanical properties M. Polyakov'02.
- A similar sum rule exists for the subtraction constant $\mathcal{H}_{0}(u \mid \vartheta)$ of the DR in ν_{u} in the near-backward scaling regime.
- Can we establish a link between the two subtraction constants?
- Possible access to the D-term FF for large $-t$ (small u).
- Interpretation in terms of the mechanical properties?

