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Let us (try to) be honest (and modest) !

Status of forward meson electroproduction (QCD)

– QCD factorization ” proven ” for γ∗LN → πN ′

BUT σγ
∗N→πN ′

T dominant

– σT explained (G.K., S.L et al)

BUT with twist 3 amplitudes with end point divergences to be cured ”by hand” !

– γ∗TN → ρTN
′ proven to be zero at leading twist (and

γ∗LN → ρTN
′ non-factorizable)

BUT σγ
∗N→ρTN ′

sizeable !

Why do we insist on QCD colinear factorization ?



Partial answer : Remember
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amplitudes Mλ′0,λ0, provided of course that both photons
are off shell [8]. Double helicity flip amplitudes Mλ′+,λ−

and Mλ′−,λ+ are generated at order αs by gluon transver-
sity distributions [9,10]. Finally, transitions involving one
transverse and one longitudinal photon are suppressed by
one power of the large scale Q or Q′. These twist-three
contributions1 have been studied in [11], and twist-four
contributions to the double helicity flip amplitudes in [12].
These studies were performed for large spacelike virtuali-
ties; whether they can be extended to the timelike case is
a question beyond the scope of this paper.

The DVCS and TCS processes are limiting cases of (1)
where one of the photons is on shell. From (6) we readily
see that to leading-twist accuracy one has ξ = η in DVCS
and ξ = −η in TCS. The convolutions (5) obey

H1(−η, η, t) = [H1(η, η, t)]∗,

H̃1(−η, η, t) = −[H̃1(η, η, t)]∗,
E1(−η, η, t) = [E1(η, η, t)]∗,

Ẽ1(−η, η, t) = −[Ẽ1(η, η, t)]∗, (9)

which leads to the simple relations

Mλ′+,λ+
∣∣∣
TCS

= [Mλ′−,λ−]∗DVCS,

Mλ′−,λ−
∣∣∣
TCS

= [Mλ′+,λ+]∗DVCS (10)

between the helicity amplitudes for TCS and DVCS at
equal values of η and t. These relations should be eval-
uated at corresponding values of Q′2 and Q2 since the
photon virtualities play analogous roles in providing the
hard scale of the respective processes and thus enter in
the scale dependence of the parton distributions. The re-
lations (10) tell us that at Born level and to leading twist
one obtains the amplitudes for TCS from those of DVCS
by changing the sign of the imaginary part and revers-
ing the photon polarizations. To this accuracy, the two
processes thus carry exactly the same information on the
generalized quark distributions.

We remark that the relations (9) and hence (10) no
longer hold at O(αs), neither for the one-loop corrections
to the quark handbag diagrams in Fig. 2 nor for the dia-
grams involving gluon distributions. On general grounds,
the phase structure of the two processes is in fact differ-
ent. Whereas the only discontinuity of the two-photon am-
plitude in DVCS kinematics is in the s-channel, the TCS
amplitude has discontinuities in both s and Q′2, with one-
loop hard scattering diagrams contributing to both cuts.
In situations where O(αs) contributions are important, the
DVCS and TCS processes will have a different dependence
on the generalized parton distributions. TCS and DVCS
together can then constrain them more effectively than ei-
ther process alone. The detailed study of TCS at one-loop
level is beyond the scope of this work, and we will base
our numerical studies on the Born level expression (4).

1 We use here the dynamical definition of twist, where twist n
contributions to the Compton amplitude are suppressed by
n− 2 inverse powers of the large scale
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Fig. 3a,b. The loop momentum configurations x = η where
the Born level amplitude receives its imaginary part in a DVCS
and b TCS. Short vertical lines indicate on-shell quark lines
in the hard scattering, plus-momentum fractions ±2η and 0
refer to the average proton momentum (1/2)(p + p′). The cor-
responding configurations for x = −η are obtained by reversing
the charge flow of the quark line

It is worthwhile to compare the momentum configura-
tions in DVCS and TCS from which the Born level con-
volutions (5) receive their imaginary parts. From Fig. 3
we see that in both cases there is a quark line with zero
plus-momentum coming from the proton, and that in both
cases it is attached to the real photon, i.e., to the final state
in DVCS and to the initial state in TCS.

We conclude this section by defining the variable

τ =
Q′2

2p · q =
Q′2

s−M2
(11)

for the TCS process as the analog of the Bjorken vari-
able xB = Q2/(2p · q) in DVCS. The similar roles played
by these quantities reveals itself in their relations with η,
which to leading-twist accuracy reads η = τ/(2 − τ) for
TCS and η = xB/(2− xB) for DVCS.

3 The timelike photon

Processes involving timelike photons can have markedly
different features than processes controlled by large space-
like virtualities. These features usually do not arise to
leading order in perturbation theory, which is the approx-
imation we will work in here. A closer look at the Born
level diagrams reveals nevertheless important similarities
and differences between timelike processes, which we now
briefly discuss.

The reaction which at first sight is most similar to
TCS is Drell–Yan pair production in hadron–hadron col-
lisions. In that case, the O(αs) corrections to the Born
graph of Fig. 4a have considerable size and make up for
most of the much discussed K-factor of this process. A
way to understand them is the occurrence of large contri-
butions enhanced by π2, which can be traced back to the
correction of the quark-photon vertex for spacelike γ∗ and
on-shell quarks [13]. Notice that in the TCS Born graphs
of Fig. 2 only one of the two quark lines attached to the
γ∗ is on shell, whereas the other one is off shell by order
Q′2. One might argue that the second line does become
on shell in the imaginary part of the amplitude, as indi-
cated in Fig. 3b, but there is an important difference: the
quark lines in the Drell–Yan diagram and one of the lines

q2 = −Q2 < 0 q′2 = +Q′2 > 0

THE TWO MOST SIMPLE PROCESSES to access GPDs

Many experiments on DVCS

→ success story for GPDs and for collinear QCD factorization in exclusive processes

QCD part known at NLO

Kinematical (mass and t 6= 0) higher twist effects under control !

New experimental data coming soon on TCS from CLAS



For further use in backward case

Forward DVCS and TCS

Helicity amplitudes in terms of Compton form factors

H(ξ, t, Q2) =
∫ 1
−1 dxT

q(x, ξ,Q2)Hq(x, ξ,Q2) +
∫ 1
−1 dxT

g(x, ξ,Q2)Hg(x, ξ,Q2)

we implement the new results on target mass and finite t
corrections [19] nor the recently proposed resummation
formula [20] which focuses on the regions near x ¼ "!.

II. KINEMATICS AND AMPLITUDES

A. Kinematics

We introduce two lightlike vectors p and n satisfying
p2 ¼ 0, n2 ¼ 0 and n # p ¼ 1. We decompose the mo-
menta in this light-cone basis as k" ¼ #n" þ $p" þ k"T ,
with k2T < 0, and we further note kþ ¼ k # n. We
also introduce the standard kinematical variables: ! ¼
P0 % P, t ¼ !2 and W2 ¼ ðqin þ PÞ2.

We define kinematics separately for spacelike (sl) and
timelike (tl) Compton scattering. We denote the (positive)
skewness variable as ! in the DVCS case, and as % in the
TCS case. In the DVCS case, where %q2in ¼ Q2 > 0 and
q2out ¼ 0, we parametrize the momenta as follows:

q"in ¼
Q2

4!
n" % 2!p";

q"out ¼ #sln
" % !2

T

2#sl
p" % !"

T ;

P" ¼ ð1þ !Þp" þ M2

2ð1þ !Þn
";

P0" ¼ $slp
" þM2 %!2

T

2$sl
n" þ !"

T ;

(7)

where M is the nucleon mass. The coefficients #sl, $sl in
(7) satisfy the following system of equations:

#sl ¼
Q2

4!
þM2

2

!
1

1þ !
% 1

$sl

"
þ !2

T

2$sl
;

$sl ¼ 1% !þ !2
T

2#sl
;

(8)

which in the limit M ¼ 0 and !T ¼ 0 relevant for calcu-
lation of the coefficient function leads to the standard
values #sl ¼ Q2=4! and $sl ¼ 1% !.

In the TCS case, where q2in ¼ 0 and q2out ¼ Q2 > 0, we
parametrize the momenta as

q"in ¼
Q2

4%
n";

q"out ¼ #tln
" þQ2 %!2

T

2#tl
p" %!"

T ;

P" ¼ ð1þ %Þp" þ M2

2ð1þ %Þ n
";

P0" ¼ $tlp
" þM2 % !2

T

2$tl
n" þ !"

T :

(9)

The coefficients#tl,$tl in (9) are solutions of the following
system of equations:

#tl ¼
Q2

4%
þM2

2

!
1

1þ %
% 1

$tl

"
þ !2

T

2$tl
;

$tl ¼ 1þ %%Q2 %!2
T

2#tl
;

(10)

which, again in the limit M ¼ 0 and !T ¼ 0 relevant for
calculation of the coefficient function, take the standard
values #tl ¼ Q2=4% and $tl ¼ 1% %.

B. The DVCS and TCS amplitudes

After proper renormalization, the full Compton scatter-
ing amplitude1 reads in its factorized form (at factorization
scale "F)

A"& ¼ %g"&
T

Z 1

%1
dx

#XnF

q

TqðxÞFqðxÞ þ TgðxÞFgðxÞ
$

þ i'"&
T

Z 1

%1
dx

#XnF

q

~TqðxÞ ~FqðxÞ þ ~TgðxÞ ~FgðxÞ
$
;

(11)

where we omitted the explicit skewness dependence. The
renormalized coefficient functions are given by

TqðxÞ ¼
#
Cq
0ðxÞ þ Cq

1ðxÞ þ ln
!
Q2

"2
F

"
# Cq

collðxÞ
$
% ðx ! %xÞ; TgðxÞ ¼

#
Cg
1ðxÞ þ ln

!
Q2

"2
F

"
# Cg

collðxÞ
$
þ ðx ! %xÞ;

~TqðxÞ ¼
#
~Cq
0ðxÞ þ ~Cq

1ðxÞ þ ln
!
Q2

"2
F

"
# ~Cq

collðxÞ
$
þ ðx ! %xÞ; ~TgðxÞ ¼

#
~Cg
1ðxÞ þ ln

!
Q2

"2
F

"
# ~Cg

collðxÞ
$
% ðx ! %xÞ:

(12)

Results of the NLO calculations [10–14] of the quark coefficient functions, based on the standard definitions of GPDs
given in Diehl’s review [2], read in the DVCS case

1We do not consider the photon helicity changing amplitude coming from the transversity gluon GPD [21].
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Cq
0ðx;!Þ ¼ $e2q

1

xþ !$ i"
;

Cq
1ðx;!Þ ¼

e2q"SCF

4#

1

xþ !$ i"

!
9$ 3

xþ !

x$ !
log

"
xþ !

2!
$ i"

#
$ log 2

"
xþ !

2!
$ i"

#$
;

Cq
collðx;!Þ ¼

e2q"SCF

4#

1

xþ !$ i"

!
$3$ 2 log

"
xþ !

2!
$ i"

#$
;

~Cq
0ðx;!Þ ¼ $e2q

1

xþ !$ i"
;

~Cq
1ðx;!Þ ¼

e2q"SCF

4#

1

xþ !$ i"

!
9$ xþ !

x$ !
log

"
xþ !

2!
$ i"

#
$ log 2

"
xþ !

2!
$ i"

#$
;

~Cq
collðx;!Þ ¼

e2q"SCF

4#

1

xþ !$ i"

!
$3$ 2 log

"
xþ !

2!
$ i"

#$
;

(13)

where CF ¼ ðN2
c $ 1Þ=ð2NcÞ, Nc being the number of colors, and eq is the quark electric charge in units of the proton

charge. Using the same conventions, the gluon coefficient functions read in the DVCS case

Cg
1ðx;!Þ¼

!e2q"STF

4#

1

ðxþ!$ i"Þðx$!þ i"Þ&
!
2
xþ3!

x$!
log

"
xþ!

2!
$ i"

#
$xþ!

x$!
log2

"
xþ!

2!
$ i"

#$
;

Cg
collðx;!Þ¼

!e2q"STF

4#

2

ðxþ!$ i"Þðx$!þ i"Þ

!
$xþ!

x$!
log

"
xþ!

2!
$ i"

#$
;

~Cg
1ðx;!Þ¼

!e2q"STF

4#

1

ðxþ!$ i"Þðx$!þ i"Þ&
!
$2

3xþ!

x$!
log

"
xþ!

2!
$ i"

#
þxþ!

x$!
log2

"
xþ!

2!
$ i"

#$
;

~Cg
collðx;!Þ¼

!e2q"STF

4#

2

ðxþ!$ i"Þðx$!þ i"Þ

!
xþ!

x$!
log

"
xþ!

2!
$ i"

#$
;

(14)

where TF ¼ 1
2 . The results for the TCS case are simply [9]

related to these expressions

TCSTðx;$Þ ¼ 'ðDVCSTðx;! ¼ $Þ þ i#Ccollðx;! ¼ $ÞÞ(;
(15)

where the þ ($) sign corresponds to the vector (axial)
case.

III. MODELS FOR GPDS

In our analysis we will use two GPD models based on
double distributions (DDs) [1,22]. DDs allow us to trivially
achieve one of the strongest constraints on GPDs: the
polynomiality of the Mellin moments of GPDs. They
also automatically restore usual PDFs in the forward limit
at !, t ! 0. The GPDs are expressed as a two-dimensional
integral over " and % of the double distribution fi

Fiðx;!; tÞ ¼
Z 1

$1
d%

Z 1$j%j

$1þj%j
d"&ð%þ !"$ xÞfið%;"; tÞ

þDF
i

"
x

!
; t
#
"ð!2 $ x2Þ; (16)

where F ¼ H, E, ~H, ~E and i denotes the flavor (val for
valence quarks, sea for sea quarks and g for gluons). In our
analysis we only take into account the contribution of H
and ~H. Indeed, E and ~E are mostly unknown, and recent

phenomenological studies of Ref. [23] show that most of
the existing DVCS observables are sensitive mostly to H
and ~H.
The DD fi reads

fið%;"; tÞ ¼ gið%; tÞhið%Þ
#ð2ni þ 2Þ

22niþ1#2ðni þ 1Þ

& ½ð1$ j%jÞ2 $ "2*ni
ð1$ j%jÞ2niþ1 ; (17)

where # is the gamma function, ni is set to 1 for valence
quarks, 2 for sea quarks and gluons. gið%; tÞ parametrizes
the t dependence of GPDs, the hið%Þ’s in the case of GPDs
H and ~H denote their forward limit and are related to the
usual polarized and unpolarized PDFs in the following
way:

hgð%Þ ¼ j%jgðj%jÞ;
hqseað%Þ ¼ qseaðj%jÞsignð%Þ;
hqvalð%Þ ¼ qvalð%Þ"ð%Þ;
~hgð%Þ ¼ %$gðj%jÞ;

~hqseað%Þ ¼ $qseaðj%jÞ;
~hqvalð%Þ ¼ $qvalð%Þ"ð%Þ:

(18)
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(CFFs) [9]:

SM++++ =
p

1�x 2


SH +S fH � x 2

1�x 2 (SE +S eE )
�

,

SM�+�+ =
p

1�x 2


SH �S fH � x 2

1�x 2 (SE �S eE )
�

,

SM++�+ =
p

t0� t
2M

h
SE �x S eE

i
,

SM�+++ =�
p

t0� t
2M

h
SE +x S eE

i
, (6)

and

T M+�+� =
p

1�x 2


T H +T fH � x 2

1�x 2 (T E +T eE )
�

,

T M���� =
p

1�x 2


T H �T fH � x 2

1�x 2 (T E �T eE )
�

,

T M+��� =
p

t0� t
2M

h
T E �x T eE

i
,

T M��+� =�
p

t0� t
2M

h
T E +x T eE

i
. (7)

Here, X Ml 0µ 0l µ denotes the helicity amplitudes for
DVCS (X = S) and TCS (X = T ), l (l 0) is the helicity of
the incoming (outgoing) proton, and µ (µ 0) is the helicity
of the incoming (outgoing) photon. The CFFs H , fH ,E
and eE are functions of four variables: the square of four-
momentum transfer t = (p2� p1)2, the longitudinal mo-
mentum transfer (skewness) x , the photon virtuality Q
and the factorization scale µF . The latter is omitted in
the following equations for the brevity. With M stand-
ing for the mass of the nucleon, t0 = �4x 2M2/(1� x 2)
is the smallest absolute value of t allowed at a fixed
value of skewness (up to contributions suppressed by
power corrections of the order of Q2). The variable t =
Q02/(2p ·q) for TCS is the analog of the Bjorken vari-
able xB = Q2/(2p ·q) for DVCS. The similar role played
by these quantities reveals itself in their relations with x ,
which to the leading twist accuracy reads x = t/(2� t)
for TCS and x = xB/(2� xB) for DVCS.

Factorization theorems allow to express CFFs in
terms of perturbatively calculable coefficient functions
T i and GPDs Fi, where i = u,d, . . . ,g denotes a given
parton type:

F (x , t,Q2) =
Z 1

�1
dx Â

i=u,d,...,g
T i(x,x ,Q2)Fi(x,x , t) . (8)

The coefficient functions ST for the spacelike case at LO
and NLO read:
ST i LO= SCi

0 (9)

ST i NLO= SCi
0 +

as(µ2
R)

2p


SCi

1 + SCi
coll ln

Q2

µ2
F

�
, (10)

where µR is the renormalization scale. The expressions
for SCi

0, SCi
1 and SCi

coll can be found in Ref. [32].
Thanks to simple spacelike-to-timelike relations de-

rived in Ref. [32], we can express the timelike coeffi-
cients by the spacelike ones in the following way:

T T i LO= ±ST i⇤ , (11)

T T i NLO= ±ST i⇤ ⌥ ip
as(µ2

R)
2p

SCi⇤
coll , (12)

where upper (lower) sign is for (anti-)symmetric coeffi-
cient functions in x . For (anti-)symmetric CFFs H ( fH )
this gives:

T H
LO= SH ⇤ , (13)

T fH LO= �S fH ⇤ , (14)

T H
NLO= SH ⇤ � ip Q2 ∂

∂Q2
SH

⇤
, (15)

T fH NLO= �S fH ⇤+ ip Q2 ∂
∂Q2

S fH ⇤ . (16)

The corresponding relations exist for (anti-)symmetric
CFFs E ( eE ).

In the recent study [16], the artificial neural network
technique was employed to determine the spacelike CFFs
from a global analysis of almost all DVCS measurements
off a proton target. In this analysis the replica method was
used to propagate experimental uncertainties to those of
extracted quantities. Together with Eqs. (13-16), this cre-
ates an opportunity to perform model independent pre-
dictions for TCS, thus allowing for a quantitative assess-
ment of the impact of the expected measurements.

For illustration we focus now on CFF H . In Fig.
1 we show the extracted DVCS CFF SH (shaded gray
band) as a function of x for exemplary kinematics of
Q2 = 2 GeV2, t = �0.3 GeV2. For comparison, we also
present a model prediction based on the Goloskokov-
Kroll (GK) parametrization of GPDs [33–35], obtained
with LO (dashed line) and NLO (solid line) coefficient
functions. All those quantities are used to perform pre-
dictions for TCS CFF T H , which are presented in Fig. 2.
The bigger uncertainty of the NLO result (dashed blue
band) as compared to the LO one (shaded red band),
reflects the fact that the available data do not constrain
much the Q2 dependence of DVCS CFFs, cf. Eq. (15).
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In the recent study [16], the artificial neural network
technique was employed to determine the spacelike CFFs
from a global analysis of almost all DVCS measurements
off a proton target. In this analysis the replica method was
used to propagate experimental uncertainties to those of
extracted quantities. Together with Eqs. (13-16), this cre-
ates an opportunity to perform model independent pre-
dictions for TCS, thus allowing for a quantitative assess-
ment of the impact of the expected measurements.

For illustration we focus now on CFF H . In Fig.
1 we show the extracted DVCS CFF SH (shaded gray
band) as a function of x for exemplary kinematics of
Q2 = 2 GeV2, t = �0.3 GeV2. For comparison, we also
present a model prediction based on the Goloskokov-
Kroll (GK) parametrization of GPDs [33–35], obtained
with LO (dashed line) and NLO (solid line) coefficient
functions. All those quantities are used to perform pre-
dictions for TCS CFF T H , which are presented in Fig. 2.
The bigger uncertainty of the NLO result (dashed blue
band) as compared to the LO one (shaded red band),
reflects the fact that the available data do not constrain
much the Q2 dependence of DVCS CFFs, cf. Eq. (15).

at LO : HTCS = H∗DV CS ; H̃TCS = −H̃∗DV CS
at NLO HTCS = H∗DV CS−iπQ2 d

dQ2H∗DV CS

H̃TCS = −H̃∗DV CS+iπQ2 d
dQ2H̃∗DV CS

Difference between DVCS and TCS ↔ QCD evolution of GPDs



Backward DVCS and Backward TCS

Backward photon electroproduction ↔ Backward lepton pair photoproduction

p1 pγ

γ∗

γN TDA

u

s

CF

N DA

p2

Q2

γ

t

pN q′; q′2 = Q2

u

s

Nγ TDA

p′
N

γ∗

t

q; q2 = 0

γ

CF

N DA

Small −u i.e. Large −t
i.e. backward kinematics (in γN CMS)

and

large Q2 to access quark and gluon level

large s to avoid resonance effects.



Nucleon to meson TDAs → Nucleon to photon TDAs

Remember Kirill’s presentation of Nπ TDAs

Same Operator

Ô uud
ρτχ (λ1n, λ2n, λ3n) = εc1c2c3u

c′1
ρ (λ1n)W c′1c1[λ1, λ2]u

c′2
τ (λ2n)W c′2c2[λ2, λ3]d

c′3
χ (λ3n)W c′3c3[λ3, λ1]

but different matrix elements (helicity structure similar to N → ρT)

!γ 
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!

N!

N’!

e%!
e+!

TDA$

N$ M$

!

TDA$

γ

Crossing : Nucleon to photon TDAs → Photon to Nucleon TDAs
!

TDA$

γ πp

x2x1 x3

TDA
N’

V Nγ
i (xi, ξ, u) = V γN

i (−xi,−ξ, u) ; ANγi (xi, ξ, u) = AγNi (−xi,−ξ, u) ;

TNγi (xi, ξ, u) = T γNi (−xi,−ξ, u)

see BP, Semenov-Tian-Shansky, Szymanowski, PRD 95 (2017) for the similar (Nπ)→ (πN) crossing.



Nucleon to photon TDAs

16 TDAs → 4 TDAs at ∆T = 0 (denoting ∆2 = u) :

Fourier transformed matrix element of the ψu ψu ψd operator, decomposed on
leading twist Dirac structures

4F〈V (pV , sV )|Ôuud
ρτχ(λ1n, λ2n, λ3n)|Np(pN , sN)〉

= δ(x1 + x2 + x3 − 2ξ)×mN

[ ∑

Υ=1E,1T,
2E,2T

(vV NΥ )ρτ, χV
V N

Υ (x1, x2, x3, ξ,∆
2; µ2)

+
∑

Υ=1E,1T,
2E,2T

(aV NΥ )ρτ, χA
V N
Υ (x1, x2, x3, ξ,∆

2; µ2) +
∑

Υ=1E,1T,2E,2T,
3E,3T,4E,4T

(tV NΥ )ρτ, χT
V N
Υ (x1, x2, x3, ξ,∆

2; µ2)
]
,

Dirac structure ↔ helicity states of the three quarks



16 TDAs → 4 TDAs surviving at ∆T = 0

(vV N1E )ρτ, χ = (p̂C)ρτ
(
γ5Ê∗U+

)
χ
; (vV N2E )ρτ, χ = m−1

N (p̂C)ρτ
(
γ5σ∆TE∗U+

)
χ
;

(vV N1T )ρτ, χ = m−1
N (E∗ ·∆T)(p̂C)ρτ

(
γ5U+

)
χ
; (vV N2T )ρτ, χ = m−2

N (E∗ ·∆T)(p̂C)ρτ
(
γ5∆̂TU

+
)
χ
;

(aV N1E )ρτ, χ = (p̂γ5C)ρτ
(
Ê∗U+

)
χ
; (aV N2E )ρτ, χ = m−1

N (p̂γ5C)ρτ
(
σ∆TE∗U+

)
χ
;

(aV N1T )ρτ, χ = m−1
N (E∗ ·∆T)(p̂γ5C)ρτ

(
U+
)
χ
; (aV N2T )ρτ, χ = m−2

N (E∗ ·∆T)(p̂γ5C)ρτ
(
∆̂TU

+
)
χ
;

(tV N1E )ρτ, χ = (σpλC)ρτ(γ5σ
λE∗U+)χ; (tV N2E )ρτ, χ = (σpE∗C)ρτ(γ5U

+)χ;

(tV N3E )ρτ, χ = m−1
N (σp∆T

C)ρτ(γ5Ê∗U+)χ; (tV N4E )ρτ, χ = m−1
N (σpE∗C)ρτ(γ5∆̂TU

+)χ;

(tV N1T )ρτ, χ = m−1
N (E∗ ·∆T)(σpλC)ρτ(γ5γ

λU+)χ; (tV N2T )ρτ, χ = m−2
N (E∗ ·∆T)(σpλC)ρτ(γ5σ

λ∆TU+)χ;

(tV N3T )ρτ, χ = m−2
N (E∗ ·∆T)(σp∆T

C)ρτ(γ5U
+)χ; (tV N4T )ρτ, χ = m−3

N (E∗ ·∆T)(σp∆T
C)ρτ(γ5∆̂TU

+)χ;



Helicity content

At ∆T = 0, helicity conservation → T ↑→↑↑↓,↓ , T
↑→↑
↓↑,↓ , T

↑→↑
↓↓,↑ , T

↑→↓
↑↑,↑ 6= 0(TN→γuu,d )

V pγ
1E =

1

21/4
√

1 + ξ (P+)3/2

1

mN

(
T ↑→↑↑↓,↓ + T ↑→↑↓↑,↓

)
;

Apγ1E = − 1

21/4
√

1 + ξ (P+)3/2

1

mN

(
T ↑→↑↑↓,↑ − T

↑→↑
↓↑,↑

)
;

T pγ1E = − 1

21/4
√

1 + ξ (P+)3/2

1

mN

[
T ↑→↑↓↓,↑ + T ↑→↓↑↑,↑

]
;

T pγ2E = − 1

21/4
√

1 + ξ (P+)3/2

1

mN

[
T ↑→↑↓↓,↑ − T

↑→↓
↑↑,↑

]
.

New physics information on

density probabilities for helicity configurations when a proton emits a photon

e.g. Ratio |V pγ

1E |2+|Apγ

1E |2
|T pγ

1E |2+|T pγ

2E |2
↔ dh

u=−hu′(xi)
dhu=+hu

′
(xi)

Information on ”is the nucleon brighter when u-quarks have equal helicities ?”



Helicity content-2

At ∆T 6= 0 : counting ∆T factors ↔ orbital angular momentum contribution to
nucleon spin :

∆1
T in Dirac structure ↔ one unit of orbital angular momentum

∆2
T in Dirac structure ↔ two units of orbital angular momentum

∆3
T in t4 implies L = 3 : T pγ4E → T ↑→↓↓↓,↓

New physics information on

density probabilities for orbital angular momentum contributions when a proton
emits a photon

e.g. Ratio |T pγ

4E |2
V pγ

1E |2+|Apγ

1E |2+|T pγ

1E |2+|T pγ

2E |2
↔ dL=3(xi)

dL=0(xi)



Impact picture Nucleon to photon TDAs

Remember Kirill’s presentation of Nπ TDAs

Fourier transform to impact parameter : ∆T → bT

Nucleon-to-meson TDAs in impact parameter space Kirill Semenov-Tian-Shansky

• In the DGLAP-like II region w3 ≥ ξ the impact parameter specifies the location where a
quark d is pulled out of a proton and then replaced by an antidiquark ūū to form the final
state meson.

• In the ERBL-like region −ξ ≤ w3 ≤ ξ the impact parameter specifies the location where
a three-quark cluster composed of a uu-diquark and a d-quark is pulled out of the initial
nucleon to form the final state meson.

{uu} d

b

DGLAP I : x3 = w3 − ξ ≤ 0; x1 + x2 = ξ − w3 ≥ 0;

ξ
1+ξ b

ξ
1−ξ

b

d {uu}

b

DGLAP II : x3 = w3 − ξ ≥ 0; x1 + x2 = ξ − w3 ≤ 0;

ξ
1+ξ b

ξ
1−ξ

b

{uu}d

b

ERBL : x3 = w3 − ξ ≥ 0; x1 + x2 = ξ − w3 ≥ 0;

ξ
1+ξ b

ξ
1−ξ

b

Figure 2: Impact parameter space interpretation for the v3-integrated uud πN TDA in the DGLAP-like I,
DGLAP-like II and in the ERBL-like domains. Solid arrows show the direction of the positive longitudinal
momentum flow.

A complementary picture can be obtained from the v1-integrated πN TDAs. This corresponds
to a diquark constructed out of the third and second quarks (du). It makes sense to perform the
Fierz transform (see App. B3 of [12]) to the relevant set of the Dirac structures: hπN

ρτ ,χ → hπN
χτ ,ρ .

The projection v−1
τρ ,χ then involves a different combination of TDAs. The third possible picture

resulting from the v2-integrated πN TDAs should be analogous to the v1-integrated case since it
also corresponds to a {ud}u-diquark-quark operator.

4. Conclusions

In this paper we propose an interpretation for v-integrated nucleon-to-pion TDAs in the impact
parameter space. It offers an intuitive interpretation of the information contained in nucleon-to-
meson TDAs in terms of the diquark-quark contents of the corresponding hadrons.

This project has received funding from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 824093. K.S. was supported by the RSF grant
16-12-10267. L.S. acknowledges the support by the grant 2017/26/M/ST2/01074 of the National
Science Center in Poland. He also thanks the LABEX P2IO the GDR QCD and the French-Polish
Collaboration Agreement POLONIUM for support.
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Where in the transverse plane does the nucleon emit a photon ?

ERBL region : Do we see the inner light within the Nucleon ?

Impact picture Nucleon to photon TDAs

Nucleon-to-meson TDAs in impact parameter space Kirill Semenov-Tian-Shansky

• In the DGLAP-like II region w3 � � the impact parameter specifies the location where a
quark d is pulled out of a proton and then replaced by an antidiquark ūū to form the final
state meson.

• In the ERBL-like region �� � w3 � � the impact parameter specifies the location where
a three-quark cluster composed of a uu-diquark and a d-quark is pulled out of the initial
nucleon to form the final state meson.

{uu} d

b

DGLAP I : x3 = w3 � � � 0; x1 + x2 = � � w3 � 0;

�
1+� b

�
1��

b

d {uu}

b

DGLAP II : x3 = w3 � � � 0; x1 + x2 = � � w3 � 0;

�
1+� b

�
1��

b

{uu}d

b

ERBL : x3 = w3 � � � 0; x1 + x2 = � � w3 � 0;

�
1+� b

�
1��

b

Figure 2: Impact parameter space interpretation for the v3-integrated uud �N TDA in the DGLAP-like I,
DGLAP-like II and in the ERBL-like domains. Solid arrows show the direction of the positive longitudinal
momentum flow.

A complementary picture can be obtained from the v1-integrated �N TDAs. This corresponds
to a diquark constructed out of the third and second quarks (du). It makes sense to perform the
Fierz transform (see App. B3 of [12]) to the relevant set of the Dirac structures: h�N

�� ,� � h�N
�� ,� .

The projection v�1
��,� then involves a different combination of TDAs. The third possible picture

resulting from the v2-integrated �N TDAs should be analogous to the v1-integrated case since it
also corresponds to a {ud}u-diquark-quark operator.

4. Conclusions

In this paper we propose an interpretation for v-integrated nucleon-to-pion TDAs in the impact
parameter space. It offers an intuitive interpretation of the information contained in nucleon-to-
meson TDAs in terms of the diquark-quark contents of the corresponding hadrons.

This project has received funding from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 824093. K.S. was supported by the RSF grant
16-12-10267. L.S. acknowledges the support by the grant 2017/26/M/ST2/01074 of the National
Science Center in Poland. He also thanks the LABEX P2IO the GDR QCD and the French-Polish
Collaboration Agreement POLONIUM for support.
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Where does the nucleon shine ?

The intrinsic light within the Nucleon



VDM prediction for photon to Nucleon TDAs

V
γN
i = e

fρ
V
ρTN
i + e

fω
V
ωTN
i + e

fφ
V
φTN
i ( e

2

f2
ρ
≈ αem

2.6
, e2

f2
ω
≈ αem

25
, forget φ contribution)

V ρN
i , V ωN

i discussed and modelled in BP, Semenov-Tian-Shansky, Szymanowski, PRD 91

Checkpoint : experimental data on backward ω at Hall C : Li et al, PRL (2019)

simulated and the experimental resolutions was verified
with ep elastic scattering data and the relatively small
observed effect is included in the point-to-point systematic
uncertainty. Additionally, to avoid sensitivity to some
kinematic regions (at larger θ) with large contributions
from the radiative events, bins with simulated ω tail
contribution > 60% of the overall distribution are excluded
from the analysis (9% of the bins).
The uncertainty in the separated cross sections includes

both statistical and systematic contributions. The statistical
contribution consists of the error in determining “good” ω
from the background subtraction procedure (fitting error
included), the uncertainties in detector performance (effi-
ciencies and tracking) and beam characteristics on a run-
by-run basis. A comprehensive study was carried out to
obtain the total systematic uncertainties for the separated
cross section. It includes three parts: (1) correlated scale
error of the unseparated cross section (2.6%); (2) point-to-
point variations due to the cross section model dependence
in simulation; (3) effects of the error amplification (by a
factor of 1=Δϵ) of the ϵ uncorrelated u correlated system-
atic error (1.7–2.0%). The effects of all three parts are
added in quadrature as the total systematic error and are
reported separately for each u bin.
To investigate the Q2 dependence, σL and σT for the

smallest −u bin (u − umin ¼ 0) from the twoQ2 settings are
plotted on the left panel of Fig. 4, whereas the σL=σT ratio

is plotted on the right. σT shows a flat Q2 dependence,
whereas σL decreases significantly as Q2 rises. The drop in
the σL=σT ratio as a function ofQ2 is qualitatively consistent
with the prediction of TDA collinear factorization.
The extracted σL and σT as a function of −u at Q2 ¼ 1.6

and 2.45 GeV2 are shown in Fig. 5. The two sets of TDA
predictions for σT each assume different nucleon DAs as
input. The predictions were calculated at the specificQ2,W
values of each u bin. The predictions at three u bins are
joined by straight lines. At Q2 ¼ 2.45 GeV2, TDA pre-
dictions are within the same order of magnitude as the data,
whereas at Q2 ¼ 1.6 GeV2, the TDA model overpredicts
the data by a factor of ∼10. This is very similar to the recent
backward-angle πþ data from the CLAS Collaboration
[17], where the TDA prediction is within 50% of the data at
Q2 ¼ 2.5 GeV2, but far higher than the unseparated data
at Q2 ¼ 1.7 GeV2. Together, datasets suggest that the
boundary where the TDA factorization applies may begin
around Q2 ¼ 2.5 GeV2.
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FIG. 3. Unseparated cross section as a function of ϕ at
−u ¼ 0.057, 0.135, and 0.245 GeV2 (from bottom to top) at
Q2 ¼ 1.6 GeV2. The higher ϵ ¼ 0.59 and lower ϵ ¼ 0.32 data
are shown in red circles and black crosses, respectively. Red
dashed (higher ϵ) and black solid (lower ϵ) lines are the fitting
results used in Eq. (1). Note that the fitting performed takes into
account data at both ϵ settings simultaneously.
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function of Q2. Fitted lines are for visualization purpose only.
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FIG. 5. σT (triangles), σL (circles) as function of −u, at Q2 ¼
1.6 GeV2 (left), 2.45 GeV2 (right). For the lowest −u bin. TDA
predictions for σT : Chernyak-Ogloblin-Zhitnitsky (COZ) [21]
(blue dashed lines) and KS [22] (red solid lines). The green bands
indicate correlated systematic uncertainties for σT, the uncertain-
ties for σL have similar magnitude.
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But there is different physics in the TDA vs in the VDM model !

VDM : how much does a photon couple ”softly” to a nucleon

TDA : how much does a nucleon emit a photon when the 3 quarks are squeezed ?
(in ERBL)



Amplitude calculation

MγN→γ∗(εµ,q)N ′
(Q2, ξ, t) ≈ ū(N ′)ε̂(q)u(N)

∫
dxi dyi DA(yi, Q

2)TH(xi, yi, Q
2)TDA(xi, ξ, u,Q

2)

DA(yi, Q2) = proton distribution amplitude

TH : hard scattering amplitude, calculated in the collinear approximation

(same hard amplitude as for PANDA process N̄N → γ∗π)

e.g. DA(yi)TH2TDA(xi) = −4
3

T DA(yi)T T DA(xi)
(x1+iε)(2ξ−x2+iε)(x3+iε)y1(1−y2)y3

+ 20 other diagrams

At leading order, amplitude is the complex conjugate of spacelike ( i.e. electroproduction) amplitude

(At NLO, interesting analytical property Log(Q2)→ Log(Q′2)− iπ )

TESTS of the validity of the picture

Scaling law for the amplitude : M(Q2, ξ) ∼ αs(Q2)2

Q4

Dominance of the transverse polarization of the virtual photon

→ specific angular distribution of the lepton pair in its rest frame :

dσ(pp̄→l+l−π)
σdθ

∼ 1 + cos2θ



Cross section

Order of magnitude estimate : multiply ρ electroproduction predictions by e2

f 2
ρ

≈ αem

2.6
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TDAs based on COZ

and KS nucleon DA models.

deduced from model by BP, Semenov-Tian-Shansky, Szymanowski, PRD 91

To get dσγN→e
+e−N ′

dΩdQ′2dcosθ
multiply by 2αem(1+cos2θ)

πQ′2



Bethe Heitler contribution

one should not forget the QED (Bethe Heitler) process

l+

l−

p p

γ

Figure 6: The Feynman diagrams for the Bethe-Heitler amplitude.

form factors F1(t) and F2(t), normalizing F2(0) to be the anomalous magnetic moment of
the target. We find for the BH contribution to the unpolarized γp cross section

dσBH

dQ′2 dt d(cos θ) dϕ
=

α3
em

4π(s−M2)2

β

−tL

[(
F 2

1 −
t

4M2
F 2

2

) A

−t
+ (F1 + F2)

2 B

2

]
, (17)

where we have used the abbreviations

A = (s−M2)2∆2
T − t a(a + b)−M2b2 − t (4M2 − t)Q′2

+
m2

ℓ

L

[{
(Q′2 − t)(a + b)− (s−M2) b

}2
+ t (4M2 − t)(Q′2 − t)2

]

B = (Q′2 + t)2 + b2 + 8m2
ℓQ

′2 − 4m2
ℓ(t + 2m2

ℓ)

L
(Q′2 − t)2. (18)

The cross section depends on the angles θ and ϕ through the scalar products

a = 2(k − k′) · p′, b = 2(k − k′) · (p− p′) (19)

given in Eq. (15) above, and through the product of the lepton propagators in the two
BH diagrams,

L =
[
(q − k)2 −m2

ℓ

] [
(q − k′)2 −m2

ℓ

]
=

(Q′2 − t)2 − b2

4
. (20)

These expressions are rather lengthy, but simplify considerably in kinematics where t,
M2 and m2

ℓ can be neglected compared to terms going with s or Q′2. We then have

L ≈ L0 =
Q′4 sin2 θ

4
. (21)

and

dσBH

dQ′2 dt d(cos θ) dϕ
≈ α3

em

2πs2

1

−t

1 + cos2 θ

sin2 θ

[(
F 2

1 −
t

4M2
F 2

2

) 2

τ 2

∆2
T

−t
+ (F1 + F2)

2

]
. (22)

We see that the product L of lepton propagators goes to zero at sin θ = 0 in this approx-
imation. Closer inspection reveals that when sin θ becomes of order ∆T /Q′ or mℓ/Q

′ the
approximations (21) and (22) break down and one must use the full expressions.
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γ

Figure 6: The Feynman diagrams for the Bethe-Heitler amplitude.

form factors F1(t) and F2(t), normalizing F2(0) to be the anomalous magnetic moment of
the target. We find for the BH contribution to the unpolarized γp cross section

dσBH

dQ′2 dt d(cos θ) dϕ
=

α3
em

4π(s−M2)2

β

−tL

[(
F 2

1 −
t

4M2
F 2

2

) A

−t
+ (F1 + F2)

2 B

2

]
, (17)

where we have used the abbreviations

A = (s−M2)2∆2
T − t a(a + b)−M2b2 − t (4M2 − t)Q′2

+
m2

ℓ

L

[{
(Q′2 − t)(a + b)− (s−M2) b

}2
+ t (4M2 − t)(Q′2 − t)2

]

B = (Q′2 + t)2 + b2 + 8m2
ℓQ

′2 − 4m2
ℓ(t + 2m2

ℓ)

L
(Q′2 − t)2. (18)

The cross section depends on the angles θ and ϕ through the scalar products

a = 2(k − k′) · p′, b = 2(k − k′) · (p− p′) (19)

given in Eq. (15) above, and through the product of the lepton propagators in the two
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We see that the product L of lepton propagators goes to zero at sin θ = 0 in this approx-
imation. Closer inspection reveals that when sin θ becomes of order ∆T /Q′ or mℓ/Q

′ the
approximations (21) and (22) break down and one must use the full expressions.
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Dominant for forward TCS ; (hopefully) negligible for backward TCS

t small, F1(t)
t
≈ 1

t
t large, F1(t)

t
≈ 1/t3

Forward peak but no backward peak !



Bethe Heitler cross-section for DVCS

thanks to Garth Huber

Corresponding estimates for the TCS case soon to come.



ππ background

Maybe important especially near θ = 0, π.

Partly known through p̄p→ π+π− data
6 J. Van de Wiele et al.: Regge description of two pseudoscalar meson production in antiproton-proton annihilation

Fig. 8. Regge approach versus Quark interchange model [2]
for p̄p → π−π+ at s = 13.54 GeV2 . Red dashed line : Quark
interchange model; black solid line : Regge approach model.

In summary of this section, we display in the table
2, the values of different parameters of the model. These
values are obtained with a reasonable fit without stan-
dard minimization procedure, to leave room for future
constraints from data.

Table 2. Values of different parameters defined in the text for
two pion channel

tsat,N tsat,∆ ΛNNπ ΛN∆π x0,N = x0,∆ λρ Λρππ

-2.6 -3 0.85 0.55 -1.4 0.9 0.95
GeV2 GeV2 GeV GeV GeV2 GeV

4 Two kaon production

With the Regge approach formalism, the two kaon produc-
tion channels are dominated by the exchange mechanism
of the baryons Λ and Σ in the t-channel and the Φ-meson
in the s-channel. We display in Fig. 9 the corresponding
Feynman diagrams.
In the case of strange meson production, the exchanged
baryons have to carry quantum numbers at each vertex in
order to respect the strangeness conservation.

Fig. 10. Differential cross sections for p̄p → K−K+. Data
from [7,8], red dashed line for s = 11.3 GeV2 and black solid
line : s = 13.54 GeV2
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Fig. 9. Feynman diagrams for p̄p→ K−K+

The Lagrangians used in our model, the coupling con-
stants and the form factors are given in the appendix A.
Assuming the same set of free parameters of the Model
given in table 1, plus three new parameters namely
ΛNΛK = ΛNΣK = 1.05 GeV for the form factors; and
finally ΛΦKK = 1.3 GeV, λ

Φ
= 1 for the Φ diagram con-

tribution , we are able to fit reasonably the charged kaon
channels. As in the case of charged pions production, at
s = 11.3 GeV2, the main discrepancy between the data
and our caculation is located at t ∼ −2 GeV2 correspond-
ing to cos(θ) ∼ 0.65. The agreement is better at higher
energy (s = 13.54 GeV2).
In contrast to the two pion channels, we have no contribu-
tion from the u-exchanged diagram. This is an important
check of the model. It seems that the data confirms this
fact, but the error bars are too large to make a conclusion.

J. Van de Wiele and S. Ong, Eur. Phys. J. A 46 (2010), 291-298

Ways out :
– improve electron identification
– use muon channel with muon identification
– cut in θ : near π

2
, ππ cross section decreases like (1/Q′2)8 !



Conclusion

The photon content of the nucleon has already been questioned :

How Bright is the Proton? A Precise Determination
of the Photon Parton Distribution Function
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It has become apparent in recent years that it is important, notably for a range of physics studies at the
LargeHadronCollider, to have accurate knowledge on the distribution of photons in the proton.We showhow
the photon parton distribution function (PDF) can be determined in a model-independent manner, using
electron-proton (ep) scattering data, in effect viewing the ep → eþ X process as an electron scattering off
the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process
with a flavor changing photon-lepton vertex. We write its cross section in two ways: one in terms of proton
structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon
distribution as an integral over proton structure functions. As a result of the good precision of ep data, we
constrain the photon PDF at the level of 1%–2% over a wide range of momentum fractions.

DOI: 10.1103/PhysRevLett.117.242002

A fast-moving particle generates an associated electro-
magnetic field which can be interpreted as a distribution of
photons, as originally calculated by Fermi, Weizsäcker, and
Williams [1–3] for pointlike charges. The corresponding
determination of the photon distribution for hadrons,
specifically fγ=p for the proton, has, however, been the
subject of debate over recent years.
The photon distribution is small compared to that of the

quarks and gluons, since it is suppressed by a power of
the electromagnetic coupling α. Nevertheless, it has been
realized in the past few years that its poor knowledge is
becoming a limiting factor in our ability to predict key
scattering reactions at CERN’s Large Hadron Collider
(LHC). Notable examples are the production of the
Higgs boson through W=Z fusion [4], or in association
with an outgoing weak boson [5]. ForW"H production it is
the largest source of uncertainty [6]. The photon distribu-
tion is also potentially relevant for the production of
lepton pairs [7–11], top quarks [12], pairs of weak bosons
[13–18], and generally enters into electroweak corrections
for almost any LHC process. The diphoton excess around
750 GeV seen by ATLAS and CMS [19,20] has also
generated interest in understanding fγ=p.
The two most widely used estimates of fγ=p are those

included in the MRST2004QED [21] and NNPDF23QED [22]
parametrizations of the proton structure. In the NNPDF

approach, the photon distribution is constrained mainly by
LHC data on the production of pairs of leptons,
pp → lþl−. This is dominated by qq̄ → lþl−, with a
small component from γγ → lþl−. The drawback of this
approach is that even with very small uncertainties in lþl−

production data [8], in the QCD corrections to qq̄ → lþl−

and in the quark and anti-quark distributions, it is difficult
to obtain high-precision constraints on fγ=p.
In the MRST2004QED approach, the photon is instead

modeled. It is assumed to be generated as emissions from
free, pointlike quarks, using quark distributions fitted from
deep-inelastic scattering (DIS) and other data. The free
parameter in the model is an effective mass scale below
which quarks stop radiating, which was taken in the
range between current-quark masses (a few MeV) and
constituent-quark masses (a few hundred MeV). A more
sophisticated approach [23] supplements a model of the
photon component generated from quarks (“inelastic” part)
with a calculation of the “elastic” component (whose
importance has been understood at least since the early
1970s [24]) generated by coherent radiation from the proton
as a whole. This was recently revived in Refs. [25–27]. Such
an approach was also adopted for the CT14QED_INC [28] set,
which further constrains the effective mass scale in the
inelastic component using ep → eγ þ X data [29], sensitive
to the photon in a limited momentum range through the
reaction eγ → eγ [30].
In this Letter we point out that electron-proton (ep)

scattering data already contain all the information that is
needed to accurately determine fγ=p. It is common to think
of ep scattering as a process in which a photon emitted
from the electron probes the structure of the proton.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
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the published article’s title, journal citation, and DOI.
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This ”photon in the proton” PDF is similar to quark in the proton PDFs.
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(a) Structure function computation. (b) Parton level computation.

Figure 1. Our basic fictitious process, with a scalar of momentum r scattering off a light lepton
and turning it into a heavy lepton of mass M , represented by the thick red fermion line. In (a) we
show the sum of the two diagrams that relate this process to the ep scattering structure functions.
In (b) we show the diagrams that enter the calculation of the same process at next-to-leading order
according to the QCD factorization formula. Notice that the second and third diagram in (b)
(unlike the (a) diagrams) are computed for an on-shell photon, and the collinear singularity from
the photon splitting into leptons that arises there is subtracted.

is instead more similar to the photon one, where the structure functions are needed also in
the very low Q2 region, and thus must be extracted from low Q2 experimental data.

The paper is organized as follows. In section 2 we present our calculation of the lepton
PDFs. We first define our target accuracy, that is based on a careful counting scheme
of the strong and electromagnetic coupling constants and of the relevant logarithms. We
then proceed to the calculation of the lepton PDF in the limit of zero lepton mass, first
in terms of the electroproduction structure function, and then according to the parton
model formula at next-to-leading order (NLO). We use the two results to extract a formula
for the lepton PDF. We then illustrate how the result changes when the lepton mass is
included in the calculation. Finally, we explicitly verify that our lepton PDF satisfies the
Altarelli-Parisi evolution equation [5], including QED splitting processes that also involve
a term of second order in QED.

In section 3 we explain our procedure to assess the theoretical uncertainty of our final
result, which closely follows the one used in LUX2. In section 4 we describe how one
can add our lepton PDFs to any full LHAPDF set and we do this in the case of the
NNPDF31 nlo as 0118 luxqed set of ref. [6]. In section 5 we show a number of results that
validate our procedure. In section 6 we present a number of phenomenological applications
of our lepton PDFs. In particular we consider rare SM signatures of different flavour
isolated di-lepton production; the production of leptophilic Z ′; the production of doubly
charged Higgs; and the production of leptoquarks. For this last case, we show that we can
reach unexplored regions of the parameter space using already existing data from the LHC.
Finally, we give our conclusions in section 7. In the appendices A–D we provide further
technical details.

2 Details of the calculation

We now illustrate our calculation. We first compute our probe process in terms of the
electroproduction structure functions. Then we compute the same process in the parton

– 3 –

for inclusive observables.

The Nucleon to photon TDA goes deeper in this quest.

Understanding the brightness of the nucleon is worth the effort !



Why do we insist on QCD colinear factorization ?

because if QCD is right, it is the BEST way to access the nucleon structure

but obviously we need theoretical progresses

and

precise and various experimental data

NOW AT JLab and UPCs at RHIC and LHC, SOON at PANDA...

LATER at EIC !

THANK YOU for your attention
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Dispersion relations for the Compton amplitude

�(⇤)(q1) + N(p1)! �(⇤)(q2) + N(p2);
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Dispersive approach in forward and backward scaling regimes

DVCS case. GPD sum rule O. Teryaev’05 for the D-term FF:

4D(t)
LO
=

Z 1

0
dx

2x

x2 � ⇠2

h
H(+)(x , x , t)� H(+)(x , ⇠, t)

i
.

D-term FF encodes a bulk of nucleon’s mechanical properties M. Polyakov’02.

A similar sum rule exists for the subtraction constant H0(u|#) of the DR in ⌫u in the
near-backward scaling regime.

Can we establish a link between the two subtraction constants?

Possible access to the D-term FF for large �t (small u).

Interpretation in terms of the mechanical properties?
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