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Abstract
We propose to continue our computation of the axial-vector form factor of the nucleon using the highly-

improved staggered-quark (HISQ) action for both valence and sea quarks. We use the (2+1+1)-flavor HISQ
ensembles generated at the physical point, combining lattice QCD calculations of the q2 dependence with
the z expansion to obtain a model-independent description of the shape. As a by-product, we will compute
the axial charge gA directly at the physical point. We will test our approach with the shape of the vector
form factor, which is constrained by high-statistics electron-scattering data. The project is well aligned
with USQCD goals, because the axial-vector form factor is an important ingredient in quasielastic neutrino-
nucleon scattering, which is the key signal process in neutrino-oscillation experiments at Fermilab.

We request 203 kGPU-hours and 3 M Sky-core-hours at BNL or Fermilab; we also request 50 Tbyte disk
space and 108 Tbyte tape storage. If we continue running at BNL and the tape storage has to be at Fermilab
or JLab, some scratch space for staging to the tape robot is also needed. Using USQCD conversion factors,
the total request is 10 M Sky-core-hours.
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I. INTRODUCTION

In 2014, the Particle Physics Project Prioritization Panel (P5) recommended a suite of short-
and long-baseline neutrino experiments as the core of the coming, domestic, accelerator-based
high-energy physics program [1]. The main motivations are to answer questions that explore
beyond the Standard Model: What are the neutrino mass and oscillation parameters, including CP
violation? Are neutrinos Majorana particles? Are there additional sterile species of neutrino? Do
neutrinos interact in non-Standard ways, for example as they pass through matter? Since 2015,
Fermilab and its partners have taken several steps toward answering these questions, with results
from NOvA, MINERvA, and MicroBooNE, refurbishment of ICARUS at CERN and transport to
Fermilab, and establishment of a strong international collaborations for the future long-baseline
DUNE and short-baseline SBND experiments.

These questions sound remote from QCD, but the essence of the experimental technique is
neutrino-nucleus scattering. Until recently, the goal has been to demonstrate that neutrino mixing
parameters are nonzero, and neutrino-oscillation experiments (mostly) circumvented hadronic and
nuclear physics with measurements of flux×(cross section) from a near detector. Now that exper-
iments are moving from first observations to precise measurements, the theoretical understanding
of the neutrino-nucleus interaction will play an ever more important role.

Figure 1 depicts the interplay of nuclear physics, hadronic physics, and neutrino physics. The
key signal process is charged-current quasielastic scattering, νln→ l−p (or ν̄l p→ l+n), i.e., with
no extra pions. As it stands (Fig. 1, left), scattering data must be analyzed assuming both a form-
factor model for the nucleon-level transition and nuclear models. The latter describe the initial
state of the nucleon inside the nucleus and also how final-state interactions with the nucleus modify
the signal. For example, primary pions could be absorbed by the nucleus, or secondary pions
could be created after the initial scatter. The experimental data are then studied further, often with
a Monte Carlo such as GENIE [2], to look for self-consistency of the hadronic and nuclear models.
Even when this process converges to a stable description of the data, it introduces an unquantifiable
uncertainty into estimates of neutrino-oscillation parameters, θi j and δCP.
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FIG. 1. Left: current interplay between data, hadronic physics (circle enclosing a red, green, and blue
quark), and nuclear physics (collection of nucleons at the bottom), feeding into the GENIE Monte Carlo [2]
and ultimately uncertainties on oscillation parameters, such as θ23. Right: sketch of the disruption possible
with ab initio calculations from lattice QCD.
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The neutrino-nucleon interaction can be understood, from first principles, with lattice QCD.
Nucleon physics is a challenge, so (for now) we address the obvious first step: a calculation
of the shape of the axial-vector form factor. Calculations of this form factor have a considerable
history in lattice QCD and have been found to be much more demanding than those of meson form
factors. Some of the challenges are a difficult chiral extrapolation, large finite-volume effects, and
contamination from excited states in lattice-QCD correlation functions. We address the first two
problems with the HISQ ensembles [3, 4]. We propose to start with the physical-point ensembles,
so no chiral extrapolation will be needed. The physical volumes of these ensembles are large:
L > 5 fm, 3.3≤MπL≤ 3.9. Thus, finite-volume effects should be under control.

II. METHODS

Neutrino-nucleon scattering is mediated by W -boson exchange. In quasielastic scattering, we
are interested in the matrix elements

〈p(p)|V +
µ |n(k)〉= ūp(p)

[
γµF1(q2)+

iσµνqν

2MN
F2(q2)

]
un(k), (2.1)

〈p(p)|A +
µ |n(k)〉= ūp(p)

[(
γµ −

2MNqµ

q2

)
γ

5FA(q2)+
2MNqµ

q2 γ
5FP(q2)

]
un(k), (2.2)

where ūp and un are nucleon spinor wave functions, V +
µ and A +

µ are the (continuum) charged
vector and axial-vector currents, MN is the nucleon mass (neglecting isospin), and q = p− k is
the momentum transfer. Neutrino physics needs the axial form factor FA(q2), while the vector
form factor F1(q2) can be used to build confidence in our results, because its shape is constrained
(up to radiative corrections and isospin violation) by high-statistics electron-nucleon scattering. In
neutrino scattering, the form factors F2 and FP are not as important as F1 and FA.

A. Staggered Baryon Operators

Operators for baryons with staggered quarks have been studied in the past [5, 6]. In general,
composite operators of staggered fields with good quantum numbers are spread over a 23-site cube
on a timeslice t. One introduces

ψ
a
iA(y) = χ

a
i (y+A), (2.3)

where χ is the one-component field in the staggered action (of color a and flavor i). The coordi-
nate y labels the origin of the cubes (and y4 = t), and A is a sum of unit vectors connecting y to the
other corners of the spatial cube. One then introduces a basic trilinear [5, 6]

i jkBABC(y) = ε
abc

ψ
a
iA(y)ψ

b
jB(y)ψ

c
kC(y) (2.4)

that has been antisymmetrized over color. Gauge symmetry can be enforced by inserting gauge
links on a path from y+A back to y or, for A consisting of 2 or 3 directions, an average over
various paths. We use Coulomb gauge for corner wall sources (see below), which inserts implicit
averages over many paths.

Generic baryon two-point and three-point correlators are then

i jkī j̄k̄CABCĀB̄C̄(t) =
1

N3
s
∑
y

〈i jkBABC(y) ī j̄k̄B̄ĀB̄C̄(z)〉, (2.5)
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i jkī j̄k̄C
µ

ABCĀB̄C̄(t,τ) =
1

N6
s

∑
x,y

eip·(x−y)〈i jkBABC(y) Aµ(x) ī j̄k̄B̄ĀB̄C̄(z)〉, (2.6)

with N3
s lattices, Euclidean times x4 = τ , y4 = t, and origin (for now) z = 0. The lattice axial

current, Aµ(x), is a bilinear of the staggered-fermion field. B̄ is constructed by replacing quark
fields in Eq. (2.4) with antiquark fields. In practice, the B and B̄ operators are contracted with
coefficient tensors i jkORABC

r and ī j̄k̄Ō R̄ĀB̄C̄
r̄ , where r and r̄ label the irreducible representation (irrep)

of the staggered-fermion symmetry group, and R and R̄ label the component within the irrep.
Below, we refer to sums over (A,B,C) and (Ā, B̄,C̄) as “tie-ups.” As discussed in Sec. II B, the
construction of Ref. [6] yields several operators for each irrep r.

As discussed in previous proposals, we start with the corner-wall source [7–10], solving

(D+m)ac
ACGcb

CB(y,z4) = δ
ab

δy4,z4 ∑
z

δy+A,z+B, (2.7)

where, as above, y (y) and z (z) denote the coordinates of (hyper)cubes, and A, B, C the location
within spatial cubes. Here, a and b are color indices. These propagators play a key role, and the
previous two allocation years’ propagators are stored on tape,1 so we can continue to use them.

For the current insertion, we adopt two different strategies, both of which use a sequential
propagator from the current for the daughter quark in the three-point function. The first strategy,
which we call the corner current, puts the local current at a single corner, D, of the unit cube,
solving

(D+m)ac
ACĜcb

CB;q,D(x,y4,z4) = δ
ab

δx4,y4 ∑
y

δx+A,y+De−iq·(y+D)Gcb
DB(y,z4), (2.8)

for momentum transfer q, where the parent propagator Gcb
DB(y,z4) is computed from Eq. (2.7). In

practice, we choose the corner for the current insertion at random from one configuration to the
next. The different choices of D are later summed with correct choice of staggered and Fourier
phases when performing the ensemble average; we have used it for the zero-momentum vector
current, i.e., gV (ideally = 1). This method has the advantage of flexibility, because all spin-taste
currents are accessible. Moreover, it is possible to come back later and fill in the missing corners
to improve statistics. Once propagators from all eight corners have been computed, this approach
yields information equivalent the our second strategy.

The second strategy, which we call a spin-taste current, explicitly projects the desired spin-taste
quantum numbers at the current insertion. This strategy provides an extra factor of 8 statistics in
the volume average over the corner-only current of Eq. (2.8) for the same computational cost due
to the sum over corners, but restricts the spin-taste of the current insertion. In practice, we do
inversions for only the spin-taste current A3⊗A3, which is obtained by applying a relative phase
of−1 to sites an odd number of sites away from the origin in the z direction. This current insertion
may be obtained by solving the equation

(D+m)ac
ACG̃cb

CB;q,A3⊗A3
(x,y4,z4) = δ

ab
δx4,y4 ∑

D,y

δx+A,y+De−iq·(y+D)(−1)D3 Gcb
DB(y,z4). (2.9)

Similarly, the local V4⊗V4 vector current requires a daughter propagator with (−1)D3 replaced
by (−1)D1+D2+D3 , and so on for other currents. This strategy is more cost effective when a

1 A few from the smallest lattices have been lost but are cheap to recompute.
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TABLE I. Zero-momentum fermionic irreps of GTS×SUisospin(2) [6]. Colloquially, the different N-like
and ∆-like states in each irrep can be called “tastes.”

GTS | isospin: 3
2

1
2

8 3N, 2∆ 5N, 1∆

8′ 0N, 2∆ 0N, 1∆

16 1N, 3∆ 3N, 4∆

small subset of spin-taste combinations are needed; we have used it for the zero-momentum axial
current, i.e, gA.

A general three-point function can be computed by starting the inversion at z4 = 0 and Nsep
values of the source-to-insertion time separation, y4− z4. An inversion is required for each of
Nmom choices of momentum and Ncur choices of spin-taste– or corner-current insertions. This
setup requires

Ninv = 8Nc
(
1+NmomNcurNsep

)
(2.10)

runs of the (single-color) inverter per configuration, where Nc = 3 is the number of colors. Our
current plan for the axial charge (and vector charge as a cross check) is to proceed with Nmom = 1,
Ncur = 2, and Nsep = 4. For nonzero momentum, we will include an additional Nmom = 3 momenta
with Nsep = 4 and Ncur = 1 for a (randomly chosen) corner current only. With additional effective
run time (through better hardware, better inverters, or opportunistic running) we will fill in the
missing corners, as long as the additional statistics are helpful. As is common in nucleon and
B physics, we can also repeat the calculations (beyond this proposal) for several choices for the
initial time z4.

B. Excited States

To discuss our strategy for excited states, it is useful to recall some aspects of the group theory
for two or three flavors of staggered fermions [6]. The eight quark fields ψA on a spatial cube
transform as an 8 under the geometrical timeslice group of staggered fermions (GTS) [5, 6]. The
u and d flavors form an isodoublet as always. Baryons thus transform under the tensor product
(8, 1

2)⊗ (8, 1
2)⊗ (8, 1

2), which can be reduced into a direct sum of irreps, as shown in Table I. The
I = 3

2 (I = 1
2 ) column stems from fully symmetric (mixed symmetry) irreps with respect to isospin.

Let us refer to states that yield the nucleon (∆) mass in the continuum limit as “N-like” (“∆-like”).
Operators in the irreps (8, 3

2), (8,
1
2), (16, 3

2), and (16, 1
2) couple to both N-like and ∆-like baryons

and, as usual with staggered fermions, parity partners. These four irreps can be used for both
three- and two-point functions. Owing to the taste quantum number, N-like states need not have
isospin 1

2 [6]. Operators in the irreps (8′, 3
2) and (8′, 1

2) couple to ∆-like but not N-like states.
The entries in Table I often list more than one taste and kind of state. A useful feature of the

construction in Ref. [6] is that several operators arise in each irrep. They differ in the way the
quark fields are spread out over the cube. Moreover, the number of operators coincides with the
number of distinct baryons in each entry of Table I. For example, in the (16, 3

2) irrep, we have
four baryon operators and, thus, compute a 4×4 matrix correlator. This feature holds throughout
Table I. We have found, however, that it can be impossible to disentangle all tastes if the statistical
uncertainties are not smaller than the size of the taste splittings [11].
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C. Normalized Axial-Vector Current

To project out the pseudoscalar form factor, let us define

Aµ

⊥ = Aµ − qµ

q2 q ·A. (2.11)

Then, for q 6= 0,
〈p(p)|ZAAµ

⊥|n(k)〉= ūp(p)γ
µ

⊥γ
5un(k)FA(q2), (2.12)

where Aµ is the local or one-link lattice current, and ZA is its matching factor, such that ZAAµ and
the continuum current A µ have the same matrix elements.

We can eliminate the matching factor ZA via ratios. In the case of the axial-vector current, we
will form the combination

FA(q2)ūp(p)γ
µ

⊥γ
5un(k) =

〈p(p)|ZAAµ

⊥|n(k)〉
〈0|ZAA4|π(0)〉 ω2

∣∣∣∣∣
this work

〈0|2m̂P|π〉
Mπ

∣∣∣∣
Ref. [12]

ω
2∣∣

a→0 , (2.13)

where P in the second factor is the absolutely normalized pseudoscalar density (with pseudoscalar
taste), and ω is a relative scale-setting distance. The factor ZA cancels. The pion decay constant
from Aµ , 〈0|ZAAµ |π(0)〉, will be calculated as part of this project. The second factor comes
from our project on light decay constants [4, 12], as does fp4s (a good choice for 1/ω). MILC
has also published results for the gradient-flow lengths

√
t0 and w0 on the HISQ ensembles [13].

Uncertainties in the second and third factors will be subdominant, because they do not entail
nucleons. We will use Eq. (2.13) both for gA, with p= k = 0, and for the shape, with p 6= 0.

D. Methodology for Form-Factor Shapes

In the past, a dipole parametrization has been used to fit experimental data and, also, lattice-
QCD data:

FA(q2) =−gA
(
1−q2/M2

A
)−2

. (2.14)

Although a q−4 fall-off can be justified for asymptotically high q2, this form is inconsistent with
QCD in the region of interest. It is also inadequate to describe electron-nucleon scattering data for
F1(q2) [14, 15]. The value at q2 = 0 is well-known from neutron beta decay, gA = 1.2724(23) [16].

As neutrino scattering data have become more precise and the range of q2 probed more diverse,
different results for MA have been reported. Among recent experiments, the NOMAD Collabora-
tion [17] reports MA = 1.05±0.02±0.06 GeV, while the MiniBooNE Collaboration [18] reports
MA = 1.35±0.17 GeV. These error bars do not reflect defects in the dipole parametrization.

Bhattacharya, Hill, and Paz [19] have proposed using a parametrization based on analyticity
and unitarity. In the complex t = q2 plane, FA(t) has a cut on the real axis for t > tcut ≡ 9M2

π and
is analytic elsewhere. One can map the q2 plane onto the unit disk via

z(t, tcut, t0) =
√

tcut− t−
√

tcut− t0√
tcut− t +

√
tcut− t0

, (2.15)

where t0 can be chosen for convenience. This change of variables maps the cut to the unit circle;
the small region for beta decay, m2

e ≤ t ≤ (Mn−Mp)
2, is mapped to a short interval of real z; the
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scattering region t < 0 is mapped to another interval, which extends to z→ 1 as t → −∞. See
Fig. 4 in the appendix for an illustration. The endpoints of these intervals depend on t0.

Analyticity implies that the form factor can be expanded as a power series in z,

FA(q2) =
∞

∑
k=0

akz(q2, tcut, t0)k, (2.16)

and unitarity places a bound on the coefficients ak, such that the expansion converges for |z| < 1.
If an experiment or a lattice-QCD calculation accesses the range −Q2

max ≤ q2 ≤ 0, then choosing

t0 = tcut

(
1−
√

1+Q2
max/tcut

)
, (2.17)

minimizes |z|. For example, typical experiments reach Q2
max≈ 1.0 GeV2, for which case |z| ≤ 0.24,

so quadratic and higher terms are naturally very small. Recently, this formalism has been applied
to old bubble-chamber data for neutrino-deuteron scattering [20].

Following a successful procedure used by the Fermilab Lattice and MILC Collaborations in B
physics [21–23], we will fit the lattice data to the z expansion. We plan to use the rest frame for
the neutron, k = 0, placed at the source in the discussion of Sec. II A. In this frame, the scattered
proton should reach momenta up to |p|max =

√
Q2

max = 0.7 GeV. The box sizes of the HISQ
ensembles lead to the quantum of momentum 2π/L = 0.21–0.25 GeV.

Therefore, it seems sufficient to use p = 0, 2π(1,0,0)/L, and 2π(1,1,0)/L. We will study
whether we retain a signal at 2π(1,1,1)/L. If not, we will use twisted boundary conditions in
order to access arbitrary values of momentum to reach the maximum Q2 that still gives a signal.
The output of the fit will be the first two or three coefficients ak in Eq. (2.16), together with their
errors and correlation matrix.

E. Blind Analysis of ggA

Our calculation of the normalization, gA, is being done with a blinding factor. In our B- and
D-physics calculations, we introduced blinding via a small but significant multiplicative offset in
the perturbative matching factor. Here that simple scheme is not available. Instead, the three-point
code multiplies all nucleon three-point data with an offset before writing out the file. The offset is
known to no one, and only a few collaborators have the key needed to reveal it.

F. Related Calculations by Other Groups

Several collaborations around the world are pursuing calculations of nucleon form factors,
including gA. As mentioned above, most other efforts have box-size L < 3 fm for most, if not
all, of the ensembles. In 2015, the European Twisted Mass collaboration published a result for
gA (and other zero-momentum matrix elements) at physical quark mass, albeit with n f = 2 and
only one lattice spacing [24]; the physical mass ensemble has MπL = 3. The Mainz group [25]
is extending its work on vector form factors to the axial current, using the CLS ensembles with
n f = 2 and (so far) a ≈ 0.05 fm, Mπ ≈ 332 MeV, MπL = 4.0. In the past year, JLQCD [26]
released a result on four ensembles with different pion masses ranging from 290−540 MeV and
MπL≈ 3.9−5.1; Bali et al. [28] have results for ten ensembles for MπL≈ 3.4–6.7 and pion masses
down to 150 MeV; and Egerer et al. [29] have results for a single ensemble at Mπ ≈ 350 MeV using
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distillation to control for excited states. Moreover, PACS [30] has computed the axial form factor
on a single ensemble at Mπ ≈ 146 MeV with MπL ≈ 6.0. Within USQCD, there are efforts on
clover ensembles [31] and on domain-wall ensembles (1 so far) [27]. The PNDME Collaboration
is pursuing calculations of nucleon matrix elements on the HISQ ensembles, including gA and form
factors. They simulate valence quarks with the clover action, however. They have published results
based on the nine HISQ ensembles with a ≈ 0.06, 0.09, and 0.12 fm [33, 34]. (At a ≈ 0.12 fm,
PNDME used the middle volume.) Similarly, the CalLat Collaboration uses domain-wall fermions
on the HISQ ensembles to obtain a precise value of gA [35]. Given the importance of these topics
to both high-energy and nuclear physics, it is important, we believe, to have cross-checks and to
make full use of the investments made in the HISQ ensembles.

III. CODE AND ITS READINESS

We use the MILC code base [36], which is well known within USQCD. At the beginning of
this project, we extended the MILC code base to two- and three-point functions with the operators
discussed in Sec. II A, and in the 2017-18 allocation year we wrote the modifications needed
for sequential propagators. Consequently, both the GPU code for computing inversions and the
threaded CPU code for tie-ups of correlation functions are in production. Nonzero momenta on the
a≈ 0.15 fm ensemble will be computed without twisted boundary conditions: this code is in place.
On the other ensembles, nonzero momenta will be computed with twisted boundary conditions to
give the same physical momentum as on the a≈ 0.15 fm ensemble; this code requires only modest
modifications to the existing tie-up code, so it does not pose an obstacle. In the 2018-19 allocation
year we ported our operations from Fermilab to BNL. The run plan in Sec. IV B will continue
seamlessly from our current running. Note that staggered inverters on Skylake architecture cost
twice as much as on pi0, so we have focused our inversions on the BNL IC.

We continue to look for ways to optimize. One of us belongs to the exascale algorithm devel-
opment group, working on implementation of a number of efficient fermion inverters for QUDA
library, such as the block-CG [37]. The developer group is also focused on optimization of the
multigrid algorithm for the staggered operator [38], which is based on the existing QUDA multi-
grid framework [39]. Of course, none of these developments will be moved into our production
code until they are certified. We raise the point simply to emphasize that our running has the
potential to improve over the course of the year.

IV. RESOURCES

A. Timings and Resources Requested

Tables II–V summarize the time needed for separate components of the computation: two-
and three-point correlators at zero and nonzero momentum. Table VI gathers the total for the
four components. From a computing perspective, the project naturally falls into four parts: two-
point functions at zero momentum (inversions and tie-ups; Table II); three-point functions at zero
momentum (inversions and tie-ups; Table III); two-point functions at nonzero momentum (tie-ups
only; Table IV); three-point functions at nonzero momentum (inversions and tie-ups; Table V).
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B. Quarterly Run Plan

In the tables, the right-most columns spell out our run plan needed to achieve four physics
milestones. From our previous allocations, shown in Table II, we have already generated the
two-point data at three lattice spacings and have computed the nucleon mass (first milestone;
a paper is due to be submitted soon). In the first quarter (Q1), we aim to finish the full nonzero-
momentum three-point running at a ≈ 0.15 fm (Table V), which will demonstrate that we can
compute form factors’ q2 dependence (second milestone). We will then write a paper documenting
the demonstration, which will be used to support applications to other sources of computing for
the a≈ 0.06 fm physical-mass ensemble.

TABLE II. Timings on pi0 and pi0g needed to generate the HISQ zero-momentum two-point correlators
on the physical-mass ensembles. These inversions account for the “1” in Eq. (2.10), i.e., 24 single-color
inversions per configuration. We define kGPU = 1000 K80-GPU-hours and MSky= 106 Sky-core-hours.

≈ a N3
s×Nt Nmeas Nleft Inversions 2-pt tie-ups Status When

(fm) MSky

0.15 323×48 3000 0.10 MSky 0.004 Done AY 2016–17
0.15 323×48 3500 0 0.11 MSky 0.004 Done AY 2016–18
0.12 483×64 1000 0 0.20 MSky 0.006 Done AY 2017–18
0.09 643×96 1047 0 13.33 kGPU 0.137 Done AY 2017–19

TABLE III. Timings on pi0 and pi0g needed to generate the HISQ zero-momentum three-point correla-
tors on the physical-mass ensembles. Here Nmom = 1, Ncur = 2, and Nsep = 4, leading to 192 single-color
inversions. These timing estimates assume that all propagators from the zero-momentum 2-pt calculation
have been saved to tape.

≈ a N3
s×Nt Nmeas Nleft Inversions 3-pt tie-ups Status When

(fm) MSky

0.15 323×48 3500 0 0.89 MSky 0.12 Done AY 2017–18
0.12 483×64 1000 0 29.09 kGPU 0.14 Done AY 2018–19
0.09 643×96 1047 1047 106.60 kGPU 0.54 Proposed AY 2019–20 Q2, Q3
Total = ∑ time ·Nleft/Nmeas 106.60 kGPU 0.80 Proposed AY 2019–20

TABLE IV. Timings on pi0 and pi0g needed to generate Nmom = 3 HISQ nonzero momentum two-point
correlators on the physical-mass ensembles. These timing estimates assume that all propagators from the
zero-momentum two-point calculation have been saved to tape. Note that we retain some propagators with
last year’s random-wall sources for a≈ 0.15 fm and 0.12 fm. Storage in italics for clarity.

≈ a N3
s×Nt Nmeas Inversions 2-pt tie-ups Status When

(fm) Tbyte MSky

0.15 323×48 3500 34.30 0.01 Done AY 2018–19
0.12 483×64 1000 44.00 0.02 Proposed AY 2019–20 Q1
0.09 643×96 1047 29.32 0.06 Proposed AY 2019–20 Q2
Total 107.62 0.09 Proposed AY 2019–20
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TABLE V. Timings on pi0 and pi0g needed to generate the HISQ nonzero momentum three-point corre-
lators on the physical-mass ensembles. For this table, we take Nmom = 3, Ncur = 1, and Nsep = 4, leading to
288 single-color inversions. These timing estimates assume that all propagators from the zero-momentum
2-pt calculation have been saved to tape. Note that the total timing accounts for us already having generated
a single non-zero momentum a≈ 0.15fm ensemble.

≈ a N3
s×Nt Nmeas Inversions 3-pt tie-ups Status When

(fm) kGPU MSky

0.15 323×48 3500 31.88 0.32 Proposed AY 2019–20 Q1
0.12 483×64 1000 43.64 0.37 Proposed AY 2019–20 Q1
0.09 643×96 1047 159.90 1.41 Proposed AY 2019–20 Q3, Q4
Total 224.79 2.10 Proposed AY 2019–20

TABLE VI. Summary and total allocations. Here we define kGPU= 1000 K80-GPU-hours and MSky =
106 Sky-core-hours from running on pi0g and pi0. These timing estimates assume that all propagators
from the zero-momentum 2-pt calculation have been saved to tape.

Component Breakdown Inversions all tie-ups Tape storage
kGPU MSky Tbyte

2-pt (p= 0) Table II 0.00 0.00 –
3-pt (p= 0) Table III 106.60 0.80 –
2-pt (p 6= 0) Table IV 0.00 0.09 107.62
3-pt (p 6= 0) Table V 224.79 2.10 –
Total 331.39 2.99 0.14 MSky

Remaining in AY 2018–19 128.50 0.0
Request 202.89 2.99 0.14 MSky

Concurrently in Q1, we will also generate the nonzero-momentum two- and three- point data
at a≈ 0.12 fm (Tables IV and V). To evenly distribute our allocation time, in Q2, we will generate
the majority of the zero-momentum a≈ 0.09 fm three-point data (Table III). We will also generate
the nonzero-momentum two-point data at a ≈ 0.09 fm (Table IV) to prepare for the nonzero-
momentum three-point data at a≈ 0.09 fm (Table V) in Q3.

In Q3 we will finish the zero-momentum a ≈ 0.09 fm three-point functions and have enough
data to compute gA at three lattice spacings (third milestone). The bulk of our allocation time
is consumed by the a ≈ 0.09 fm ensemble, and Q4 is solely dedicated to finishing the nonzero-
momentum three-point functions on this ensemble. We will then have enough data to document
the form-factor calculation at three lattice spacings (fourth milestone).

We have already generated all the data that needs to be kept for this project. Table IV outlines
our storage needs. Here, we have the a≈ 0.15 fm and a≈ 0.12 fm propagators on tape at Fermilab
(78TBs). However the a≈ 0.09 fm propagators are on disk (29TBs), split evenly between Fermilab
and BNL. We would like to move these to tape storage. Our data management plan (attached as
separate pdf) has been generated using dmptool.org, and exists for the duration of this project.
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C. Human Resources

This project constitutes the heart of Yin Lin’s Ph. D. research at the University of Chicago.
Alexei Strelchenko of the Fermilab Scientific Computing Division is our link to algorithm devel-
opment.

D. Resources Requested

In total, we request 203 kGPU-hours and 3 M Sky-core-hours to continue running at BNL or
Fermilab; we also request 50 Tbyte disk space and 108 Tbyte tape storage. If we continue running
at BNL and the tape storage has to be at Fermilab, some scratch space at Fermilab for staging is
also needed. Using USQCD conversion factors, the total request is 10 M Sky-core-hours, at BNL
or Fermilab.

With the tape back-up, we and other USQCD groups can use these data for other calculations.
We ask that interested groups contact us to see whether the topics are of mutual interest.

V. RESULTS FROM 2015–2019

In the early stages, we obtained a blinded value of the axial charge, βgA = 1.45±0.22 [40, 41],
from 4000 configurations at a≈ 0.15 fm. The error here is statistical and from one ensemble only,
preventing a thorough study of systematics.

We now have the nucleon mass on three lattice spacings, demonstrating feasibility of the all-
staggered approach to nucleons. The results are shown in Fig. 2. Here we have studied both
the generalized eigenvalue problem (GEVP) and a multi-exponential fit with Bayesian priors on
excited states. This work has given us experience with fitting methodologies that will increase the
throughput of the axial form factor work.

We also have three-point correlators with small statistical uncertainties. Figure 3 shows a
(blinded) zero-momentum correlator with four source-current separations, both in raw form and
scaled by the fit to the two-point functions. Here we have 3400 measurements on the a≈ 0.15 fm
ensemble, yielding uncertainties of order of a few percent.

2 4 6 8 10
t0/a

0.675
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0.775

0.800

0.825

1(
t,

t 0
)

0.15fm 1(t t0), t t0 = 2
Best fit: 2/dof = 0.21
Bayesian posterior

0.002 0.072 0.102 0.122 0.142 0.162

a2[fm2]

900

925

950

975

1000

1025

M
N
 [M
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]

Best fit: 2/dof=0.38
MN, phy 940 MeV

FIG. 2. Left: nucleon-mass results on the a≈ 0.15 fm ensemble. The blue points are lattice data, the orange
curve is the fit function from the GEVP, and the green band is the Bayesian posterior. Right: Nucleon mass
MN vs. a2 at three lattice spacings with our extrapolation. From paper in preparation.
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FIG. 3. Ratio of blinded three- and two-point correlators at various source-current insertion time, τ , on
the a ≈ 0.15 fm ensemble. Class-two operators are at the source and sink. The full matrix of two- and
three-point correlators is shown in Appendix A.

VI. OUTLOOK

Eventually, we want to analyze all available physical-mass HISQ ensembles with a≥ 0.06 fm.
Subsequently, we will examine other HISQ ensembles to carry out a finite-volume study at a ≈
0.12 fm and to connect our gA with previous results at unphysical quark mass. In the longer term,
other processes could be injected into Fig. 1, for example, νn→ `−∆+, nonresonant π p, and
two-nucleon matrix elements of the form 〈NN|Aµ |NN〉.
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Appendix A: Extra figures

b

t z

a

FIG. 4. The mapping of Eq. (2.15), which maps the whole complex t plane onto the unit disk in the complex
z plane. The interval of real z for neutrino scattering is shown in blue. The point labeled “a” in the t plane
corresponds to −Q2

max; “b” to tcut.
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FIG. 5. Matrix of absolute value of two-point correlation functions in the (16, 3
2) irrep on the a ≈ 0.15 fm

ensemble. The red curve is a fit using the Bayesian methodology. The fractional residue is the relative
difference between the raw data and the fit result for the correlators.
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FIG. 6. Matrix of three-point correlation functions in the (16, 3
2) irrep on the a ≈ 0.15 fm ensemble. Here

the ratio βC3
i j(t,τ)/C2 is plotted, where β is the blinding factor (stored in a lock box but unknown). The

four source-current separations are τ = 2 (red), 3 (light blue), 4 (green), 5 (navy blue).
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