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*D-theory: The accidental discovery of a Quantum Algorithm 
for Lattice Gauge theories: Circa 1998: 

R. C. Brower, S. Chandrasekharan, U-J Wise , QCD as quantum link model, Phys. Rev D 60 (1999). 

R. C. Brower, S. Chandrasekharan, U-J Wiese,  D-theory: Field quantization … discrete  variable Nucl. Phys. B (2004)

? 

D-theory :QCD Abacus* Fermionic Qubit Algorithm ?

R. C. Brower, The QCD Abacus:  APCTP-ICPT Conference, Seoul, Korea, May (1997)

 Bravyi and Kitaev "Fermionic Quantum Computation” (2002)



Richard Feynman 
On quantum physics and computer simulation 

 “There is plenty of room to make [computers] smaller. . . . 
nothing that I can see in the physical laws . . . says the 
computer elements cannot be made enormously smaller than they 
are now. In fact, there may be certain advantages. —1959”

“trying to find a computer simulation of physics seems to me to be an 
excellent program to follow out. . . . the real use of it would be with 
quantum mechanics. . . . Nature isn’t classical . . . and if you want to 
make a simulation of Nature, you’d better make it quantum 
mechanical, and by golly it’s a wonderful problem, because it doesn’t 
look so easy.  —1981”

60 years ago!



International J. of Theoretical Physics Vol 21, now 6./7, 1982



OUTLINE:  

Quantum Computing for Quantum Field Theory

1. What is a Computer? 


2. What is Quantum ? (Qubits and all that)


3. Universal vs Efficient/Fault Tol Quantum Computing ? (FFT)


4. What is Quantum  Link  Lattice Field Theory: Universality?


5. Example for NISQ (Noisy Intermediate Scale Quantum) ?


6. Programming (virtually) the IBM Q ?



GOOD QC REFERENCES

Jack D. Hidary

Quantum 
Computing: 
An Applied 
Approach

Help you Read this Book! Simple Pedagogical Overview 

https://link.springer.com/book/10.1007/978-3-030-23922-0


IBM's new 53-qubit quantum 
computer is its biggest yet



Mikhail Lukin’s  Lab Harvard Trapped Ion



Oak Ridge National Laboratory's 200 petaflop supercomputer

“Lattice Gauge Theory Machine”  200,000,000,000,000,000 Floats/sec
9,216 IBM POWER9 CPUs and 27648 NVIDIA GPUs 

Each GPU has 5120 Cores and total of 580,608,000,000,000 transistors

TODAY

THE COMPETITION!



WILSON’S LATTICE QCD*

* K.G. Wilson, Phys. Rev. D 10 (1974), 2445.

U⇤µ⌫
(x) = [U(x, x+ µ)U(x+ µ, x+ µ+ ⌫)][U(x, x+ ⌫)U(x+ ⌫, x+ ⌫ + µ)]†

' 1 + a2iFµ⌫ � (a4/2)F 2
µ⌫ + · · ·

Zwilson =

Z

Haar

dU e
6
g2

P
⇤ Tr[U⇤ + U†

⇤]

U ij(x, x+ µ) = eiagA
ij
µ (x)

i, j = 1, 2, 3

SU(3) Gauge Transport on each link. 
Exact per site gauge invariance

45 Years Ago



 ? 

QCD Fermionic Qubit 

* See THE QCD ABACUS: A New Formulation for Lattice Gauge Theories  R. C. Brower https://arxiv.org/abs/hep-lat/9711027 

Lecture at ”APCTP-ICTP Joint International Conference ’97 on Recent Developments in Non-perturbative Method” May, 1997, Seoul, 
Korea.  MIT Preprint CTP 2693. 

From Bits  
to Qubits ?

https://arxiv.org/abs/hep-lat/9711027


WHAT IS A QUBIT

| i = ei(✓/2)n̂ · ~� |0i = (cos ✓/2 + in̂ · ~� sin ✓/2)|0i

| blocki = ei�
�
cos

✓

2
|0i+ iei� sin

✓

2
|1i

�



Math  Stuff:   U(2) = U(1) x SU(2)^*  

↵↵⇤ + ��⇤ = 1 =) cos2(✓) + n̂ · n̂ sin2(✓) = 1

U = ei�ei(✓/2)n̂ · ~� = ei�[cos(✓/2) + i n̂ · ~� sin(✓/2)]

U = ei�

cos ✓/2 + inz sin ✓/2 i(nx � iny) sin ✓/2
i(nx + iny) sin ✓/2 cos ✓/2� inz sin ✓/2

�

THEREFORE: 

U |0i = ei�[cos(✓/2) + inz sin(✓/2)]|0i+ (inx + ny) sin(✓/2)|1i

* OR U = ei�[k0�0 + i ~k · ~�] =) kµkµ = 1 =) S1 ⌦ S3



UNIVERSAL GATE SET

*

*

*

CNOT

NOT
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Nomenclature and notation

controlled-

⎡

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥

⎦

swap

⎡

⎢

⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥

⎦

controlled-Z
•

Z

=

⎡

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥

⎦

controlled-phase

⎡

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

⎤

⎥

⎦

Toffoli

•
•
⊕

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Fredkin (controlled-swap)

•
×
×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

measurement
!!
✙
✙
✙
✙
✙
✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Projection onto |0⟩ and |1⟩

qubit wire carrying a single qubit
(time goes left to right)

classical bit wire carrying a single classical bit

n qubits wire carrying n qubits

xxxi
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775 = Cnot
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0
0
0
1
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775

Cnot is |ci|ti ! |ci|c� ti

WHAT IS CNOT ? UNITARY (GENERALIZED)  XOR 

XOR / Mod 2 add 

c = 1 (true) activates Not t *

WARNING 
NC has  a NotCnot with 0 

|ci ⌦ |ti ⌘ |cti



UNIVERSAL QUANTUM COMPUTER



I.  Any dxd unitary U(d) is product  of 2x2 U(2) unitary by  GAUSSIAN 
ELIMINATION!     

                 

II.  General U(2) rotation: Gray coding with cnot’s  and one Qubit  
rotation 

III. But Sololvay-Kitaev theorem approx U(2)  on single Qubit  can be 
approximated by Hadamard  and pi/8 gates  

n2 cnot gates + one rotation

2n(2n � 1)/2 = 2n�1(2n � 1) Qubit Rotations

No of gates 2 O(logc(1/✏) c ' 2

Universal  Quantum Computing 

| (t)i = U(t)| (t) = U(t)| (t) = e
�itH | (0)i



  Gaussian Elimination:  Rotate Qubit at a time!
Label: |sni ⌦ · · ·⌦ |s2i ⌦ |s1i

i = 1, · · · 2n ! 000, 001, 010, 011, 100, 101, 111, · · · 2n � 1

UX = b =) uijxj = bi

u11x1 + u12x2 + u13x3 + u14x4 + · · · = b1

u21x1 + u22x2 + u23x3 + u24x4 + · · · = b2

u31x1 + u32x2 + u33x3 + u34x4 + · · · = b3

· · ·

Now multiply U1UX = U1b where

U1 =

2

6666664

↵ � 0 0 0 0 · · ·
��⇤ ↵⇤ 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
· · ·

3

7777775
with � � ⇤ u11 + ↵8u12 = 0 =) u21 = 0



Hypercube - Gray Codes - FFT and all that 
• Gray Coding: Adjacent Vertices Differ by one bit

Texi Cab distance = Hamming Distance.



Plaquette term  for U(1) is an example

For single triangle: 

Circuit

≅



Universality ==  Many equivalent LFT

• eg. Lattice different lattice give 
identical  c = 1/2 CFT —  square, 
triangle or spherical lattice! 

• Fields: Continuum phi 4th field and 
single bit Ising fields are equivalent 

s 2 ±1 () �x 2 R

• Different space-time + field discretizations define 
exactly the same continuum quantum field theory 

• Bosonic Sine Gordon Theory =  
Fermionic Thirring Theory

• N =  4 SUSY is dual AdS Gravity 



WARM UP: O(3) HEISENBERG SPIN MODEL

{ai(x), a†j(x)} = �ij�xy , {a†i (x)a
†
j(x)} = 0 , {ai(x), aj(x)} = 0

Global Rotation: ~J =
P

x Tr[~�Ŝx] =) [ ~J, Ĥ] = 0

Local Fermion No: F̂x = Tr[Ŝx] =) [F̂x, Ĥ] = 0

Ĥ =
X

hx,yi

Tr[ŜxŜy] , T r[Ŝx] = 0Z = Tr exp(��Ĥ).

Classical  O(3) MODEL  Quantum  antiferromagnet  O(3) MODEL

Warm up with Fermionic Quantum Operator 

~Sx ! a†i (x)�
ijaj(x) or Ŝij(x) = a†i (x)aj(x)

Z =

Z
dS exp[

1

g2

X

hx,yi

~Sx · ~Sy] ! Tr[e
� �

g2

P
x,µ ~�x · ~�x+µ ]

https://arxiv.org/abs/cond-mat/9602164

B.B. Beard and U-J Wiese



FERMIONIC  QUBIT GATES

(1� a†ab†b) + a†ab†b(c† + c) =) To↵oli

(1� a†a) + a†a(b+ b†) =) ContrNOT
|Ai

|A⇥Bi

|Ai

|Bi

a†(↵|1i+ �|0i) = �|1i a(↵|1i+ �|0i) = ↵|0i
a† + a =) X =


0 1
1 0

�

(2a†a� 1) =) Z =


1 0
0 �1

�
(a† + a)/i =) Y =


0 �i
i 0

�

Each Fermion

On Each  qubit 

(a+ a
†)2 � 1 =) H =

1p
2


1 1
�1 1

�

Classical Reversible Computing  Conserving Energy R. Landauer IBM J
journal of Research and Development, vol. 5, pp. 183-191, 1961



SYMPLIAL/GAUGE ALGEBRA
H =

g
2

2

X

hx,x+µi

(Tr[E2
L(x, µ)] + Tr[E2

R(x, µ)])�
1

2g2

X

⇤
Tr[U⇤ + U

†
⇤]

[E↵, E� ] = 2if↵��E↵

[EL, U ] = �ELU , [ER, U ] = �UER

Example: U(1) Abelian  P/Q symplectic
operators in Q-basis are 

ER = U†ELU , [U,U†] = 0

E = i
d

d✓
, U = exp[i✓]

Eij ⌘ �ij
↵E

↵ =)

UU† = 1

U(N) generalization of Gauge Algebra is 



DISCRETE QUANTUM LINK

Local Gaue Operators

x x+ µ
{ai, a†j} = �ij {bi, b†j} = �ij

⌦ij(x) = a†i (x)aj(x) + · · ·

Uij(x, x+ µ) ! Ûij = ai(x) b
†
j(x+ µ)

ai b†j

For SU(3) QCD have SU(6) per Link Lie Algebra

LINK: 

"
aia

†
j aib

†
j

bia
†
j bib

†
j

#

On each link (x,x + µ) introduce 2Nccomplex fermion

a,a
†
i right(+) moving and bj , b

†
j left(-) moving fluxon



WHAT ABOUT ANTI-SYMMETRIC  FERMIONIC FOCK SPACE? 

Step #1: PARA-STATISTICS: 
 D-Theory only require anti-commutator within each a’s  and b’s set 

PARA-STATISTICS & JORDAN-WIGNER TO THE RESCUE 

[a†iaj , a
†
pbq] = [a†iaj , a

†
p] bq + a†p[a

†
iaj , bq]

0

=) [EL, U ] = �EL U same  for  a —> b

a†1 = �+
1 , a†2 = ��z

1�
+
2 , a†3 = �z

1�
z
2�

+
3

Step #2; Jordan-Wigner: 
Apply to Locally to each set of 3  a's and b's. 

same  for  a —> b

 Simpler than Bravyi and Kitaev "Fermionic Quantum Computation” (2002)



Math Stuff: “Gamma Matrices are Jordan-Wigner” 

d = 2 : ~�(2)
i ! (�1,�2)

�(2)
d+1 ! �3 = �i�1�2

d d+ 2 : ~�(d)
i ! (�3 ⌦ ~�(d�2),�1 ⌦ I2d ,�2 ⌦ I2d)

�(d)
d+1 ! �1�2�3 · · · �d = �d+1

d = 4 : ~�(4)
i ! (�3 ⌦ ~�(2),�1 ⌦ I2,�2 ⌦ I2)

�(4)
d+1 ! �1�2�3�4 = �5



KOGUT SUSKIND HAMILTONIAN
H =

g
2

2

X

hx,x+µi

(Tr[E2
L(x, µ)] + Tr[E2

R(x, µ)])�
1

2g2

X

⇤
Tr[U⇤ + U

†
⇤]

[E↵, E� ] = 2if↵��E↵

[EL, U ] = �ELU , [ER, U ] = �UER

Example: U(1) Abelian  P/Q symplectic
operators in Q-basis are 

ER = U†ELU , [U,U†] = 0

E = i
d

d✓
, U = exp[i✓]

Eij ⌘ �ij
↵E

↵ =)

UU† = 1

U(N) generalization of Gauge Algebra is 



STARTING TO TEST REAL TIME QUBIT ALGORITHM 
FOR U(1) QUANTUM LINK GAUGE THEORY 

Few very simple kernels in Trotter factorization into
Gauge invariant Unitary operators with very few Qubit width

Ĥ =
e
2

2

X

links,s

(�z
s + �

z
s+1)

2 + ↵

X

links,s

[�+
s ⌦ �

�
s+1 + �

�
s ⌦ �

+
s+1]

� 1

2e2

X

4,s

[�+
s ⌦ �

+
s ⌦ �

+
s + �

�
s ⌦ �

�
s ⌦ �

�
s ]

See Gauge Theory for a Quantum Computer 
R. C. Brower, D. Berenstein & H. Kawai (Latice 2020)

https://arxiv.org/abs/2002.10028


To evaluate lattice: alternate between 

two coloring of triangles.

Total: about 15-20 consecutive gate operations (coherence time) per qubit per Trotter step

Estimate of current machines: 3 Trotter steps on Lattice

Choose 2 + 1 on U(1) Hamiltonian on a Triangular spacial lattice

�+
1

�+
2

�+
3 +   h.c 



The each links between two triangle are coupled by 2 Qubit  ferromagnetic 
interaction  operator to align them.

Halign ' �↵align

X
(�x ⌦ �

x + �
y ⌦ �

y)� �align

X
�
z ⌦ �

z
<latexit sha1_base64="4y0Egji6aCjplgAAvUBHNQo/nFg="></latexit>

XY couoling of gauge fixed extra 
dimension squares! E^2 coupling term

�+
s

��
s+1

(�z ⌦ 1 + 1⌦ �z)2 = 2(1 + �z ⌦ �z)

�+ ⌦ �� + �� ⌦ �+ =
1

2
(�x ⌦ �x + �y ⌦ �y)Using 

Extra dimension builds local  field rep. from 
XYZ ferromagnetic chain



Plaquette
Still gauge invariant if broken


vertically: few operations per qubit.

(Not all to all)



Parameter fitting Two Triangle couple Hamiltonian 

needing  6 Qubits & eigenvalues of 64x64 matrices

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

6

8

-1.0 -0.8 -0.6 -0.4 -0.2

-5

5

10

Just XXZ piece: need to 

avoid level crossings, 

close to XXX is better 

Together with plaquette operator:

Gap persists: suggests simulation will 


not be too polluted by UV



H4 / �+
⌦ �+

⌦ �+ + ��
⌦ ��

⌦ ��
<latexit sha1_base64="rZ8TSIt42rZFlh+zqLcd2q1leYk="></latexit>

This is a rotation on a 2-plane of 8 dimensional Hilbert space (+++) rotating into (- - -).


Can be written in terms of a double control gate after some bit flips which need to be undone

21

a. General k-link Wilson loop: In general any k-link loop Hermitian operator when expo-

nentiated results in a simple single qubit unitary rotation between fully occupied (right) or

fully empty (left) flux states.

U = e
i↵[�+

1 �
+
2 · · · �

+
k + �

�
1 �

�
2 · · · �

�
k ] (A11)

This is a rotation by ↵ in a two dimensional subspace in the |00 · · · 0i-|11 · · · 1i.

A unitary rotation on a 2-dimensional subspace of a systems of n qubits can be thought of

as a controlled gate rotation on a single qubit that only gets performed if all the other qubits

are in the up state. A simple circuit that implements this idea for the triangular plaquette

is written below

X • X

• X • X •

• R✓ •

The first step is to turn the |���i state to a |++�i state, while keeping the |+++i

invariant. This digital flipping is done with CNOT and NOT gates (the NOT gate is iden-

tified with the X Pauli matrix). That way we have concentrated the problem of classifying

the two states of interest to the last qubit. Now, we only do rotations in the plane of interest

if the first two qubits are set to +. Finally, we undo the bit flipping operators to return it

to the correct form in a computational basis. Its is clear from the diagram that this can be

done for an arbitrary plaquette and the number of bit flip operations scales like the number

of quibts in the plaquette. The only di↵erence is the number of control qubits that are

required before we perform the wanted rotation. An algorithm to perform the C2(U) can be

found in [? ], figure 4.8, pp 182, and an ancilla assisted computation that performs Cn(U)

in figure 4.10, pp 184. Both the number of ancillas add the number of operations scales like

the number of qubits in the initial state that we want to operate on.

Alternatively as above we may expand �
± = �

x
⌥ i�

y, into the �
x
, �

y basis as a sum of

2k�1 commuting terms. This follows from Hemiticity which implies an even number of �y

factors and as a consequence that any two terms have an even number of missmatched �
x-�y

pairs. To prove this consider two string A vs B. Suppose that A has Nx/Ny factors of �x
/�

y

Depending on details of architecture: it can take anywhere between 

5 computing cycles and 20 (depth).


For experts: May be done efficiently with ancillas if Toffoli gates available.

U4(t) = exp(�itH4)



Now we have the spin model
For single triangle: 



Now we have the spin model
For single triangle: 

We are interested in time evolution:

with t/n small enough.



Electric term:
For single triangle: 

Circuit

≅



Coupling term:
For single triangle: 

Circuit

≅



Plaquette term:
For single triangle: 

Circuit

≅



Overall one Trotter step looks like:

50 “physical” qubits per step. 



Trotterization

Computation of <0|U(t)|0> (exact).  
Around t/n ≃ 0.1 for useful simulation. 



On the actual IBM Q machine
Again, (t=0.1, n=1)

Ideal IBM Q

The 
distribution 



What I have to work on from now 

Theory side:  
● What if we extend the model to the spacial 

direction? 

Z2xZ2 lattice equivalent to C2xC2 torus with 
PBC (i.e. quotient mapping) 



The architecture of the library:

IBM-Q Links for Excellent Python Tutorials, compiler and simulators 

https://medium.com/quantum1net/richard-feynman-and-the-birth-of-quantum-computing-6fe4a0f5fcc7



Also Developing Quantum Computing for  Hyperbolic Lattice Hamiltonian 
using triangle group to do strong couponing AdS?CFT or Gravity/Gauge 
Duality in MInkowski

Weak Coupling LGT
Strong Coupling 

Spin Systemd+1-dim Gravity

d-dim GT

See  Lattice Setup for Quantum Field Theory in AdS2
Richard C. Brower, Cameron V. Cogburn, A. Liam Fitzpatrick, Dean Howarth, 
Chung-I Tan   https://arxiv.org/abs/1912.07606

https://arxiv.org/search/hep-th?searchtype=author&query=Brower,+R+C
https://arxiv.org/search/hep-th?searchtype=author&query=Cogburn%2C+C+V
https://arxiv.org/search/hep-th?searchtype=author&query=Fitzpatrick%2C+A+L
https://arxiv.org/search/hep-th?searchtype=author&query=Howarth%2C+D
https://arxiv.org/search/hep-th?searchtype=author&query=Tan%2C+C
https://arxiv.org/abs/1912.07606


Questions? 


