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*D-theory: The
for Lattice Gauge theories: Circa 19986:

of a Quantum Algorithm

R. C. Brower, S. Chandrasekharan, U-] Wise , QCD as quantum link model, Phys. Rev D 60 (1999).
R. C. Brower, S. Chandrasekharan, U-| Wiese, D-theory: Field quantization ... discrete variable Nucl. Phys. B (2004)

D-theory :QCD Abacus*

Fermionic Qubit Algorithm ?
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qubits can be in a superposition of all the
+C00———+ > +—O 00+ clasically allowed states

detUy
k Bravyi and Kitaev "Fermionic Quantum Computation” (2002) /

R. C. Brower, The QCD Abacus: APCTP-ICPT Conference, Seoul, Korea, May (1997)
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“If you think you understand
quantum mechanics,
then you don’t understand

quantum mechanics.,” RiChard Feynman

- Richard Feynman

On quantum physics and computer simulation

“There is plenty of room to make [computers] smaller. . . .
nothing that | can see in the physical laws . . . says the
computer elements cannot be made enormously smaller than they
are now. In fact, there may be certain advantages. —1959”

60 years ago!

“trying to find a computer simulation of physics seems to me to be an
excellent program to follow out. . . . the real use of it would be with
guantum mechanics. . . . Nature isn’t classical . . . and if you want to
make a simulation of Nature, you’d better make it quantum
mechanical, and by golly it’'s a wonderful problem, because it doesn’t
look so easy. —1981”
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...The question is, If we wrote a Hamlltom an which involved only
these [Pauli] operators, locally coupled to co ;_. ponding operators on

the other space-time points, could we imitate eve

quantum mechanical
system which is discrete and has a finite numbe of degrees of freedom?
I know, almost certainly, that we could do th it for any quantum mechan-

ical system which involves Bose_ \partl m no sure whether

particles could be described by S System. So, I leave that open..”

Richard P. Feynman
(Simulating Physics with Computers (1982)

- International J. of Theoretical Physics Vol 21, now 6./7, 1982
Los Alan




OUTLINE:

Quantum Computing for Quantum Field Theory

. What is a Computer’? /
. What is Quantum ? (Qubits and all tha

. Universal vs Efficient/Fault Tol Quantum Computing ? (FFT)
. What is Quantum Link Lattice Field Theory: Universality?
. Example for NISQ (Noisy Intermediate Scale Quantum) ?

. Programming (virtually) the IBM Q ?
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Help you Read this Book!

Quantum_
Computation
and Quantum

_ Information

! MICHAEL A. NIELSEN
Wl and ISAAC L. CHUANG
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Simple Pedagogical Overview

Jack D. Hidary

Quantum
Computing:
An Applied

Approach, |



https://link.springer.com/book/10.1007/978-3-030-23922-0
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TODAY  QOak Ridge National Laboratory's 200 petaflop supercomputer

THE COMPETITION!

“Lattice Gauge Theory Machine” 200,000,000,000,000,000 Floats/sec
9,216 IBM POWER9 CPUs and 27648 NVIDIA GPUs
Each GPU has 5120 Cores and total of 580,608,000,000,000 transistors



RIESOINS LATTICE QCD*

& T
wailson b / dU e 92 ZD TT[UD —I_ UD]
Haar

45 Years Ago ™%

I iagAY (z
— U (2,0 + ) = 494 (@)
h ,) =1,2,3
SU(8) Gauge Transport on each link.
Exact per site gauge invariance

.S . 0 =
Un,, (z) = [Ulz,z + p)U(x + p,z+ p+v)|[U(z, 2z + )U(x + v, + v+ w)f

~ 1+ a’iFy, — (a*/2)F7, + - -

* K.G. Wilson, Phys. Rev. D 10 (1974), 2445.



From BLtS
to Rublts ?

Fermionic Qubit
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qubits can be in a superposition of all the

+ 00—+ S 4O 0+ clasically allowed states

K B J

*See THE QCD ABACUS: A New Formulation for Lattice Gauge Theories R. C. Brower /arxi -
Lecture at "APCTP-ICTP Joint International Conference 97 on Recent Developments in Non-perturbative Method” May, 1997, Seoul,
Korea. MIT Preprint CTP 2693.



https://arxiv.org/abs/hep-lat/9711027

WHAT \S A QUBIT

(a) Superposition of States One Qubit Hadamard Gate
|0) 10) I0>

""""""""""""""""""""""

e g, B w=10+in

-------------------------------

N | g L lw)=]0)-]1)

_____________________________

' 0 ' 0
| Vbi0ck) = €7 ( cos §]O> +ie'? sin §|1>)

) = e0/2)7 G0y — (cos8/2 + i - & 5in 6/2)[0)



Math Stuff: U(2) = U(1) x SU(2)*

U = ei¢i0/2)0- 0 _ e'?[cos(0/2) + i - & sin(8/2)]

€030/ 2 n, sind/2 " iy — tng sty

= : : e
ds s iny ) sin 0/ 2 cos it 28 s wi

U|0) = e"®[cos(0/2) + in, sin(0/2)]|0) + (ing + ny,) sin(8/2)[1)

aual = BB =1 — e s e () = |

*or U = elkoop+i k-7 = kk,=1 = S'®§°
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Figure 4.2. Names, symbols, and unitary matrices for the common single qubit gates.



controlled-NoT

swap

controlled-Z

controlled-phase

Toffoli

Fredkin (controlled-swap)

measurement
qubit
classical bit

n qubits
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Projection onto |0) and |1)

wire carrying a single qubit
(time goes left to right)

wire carrying a single classical bit

wire carrying n qubits
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WHAT IS CNOT ? UNITARY (GENERALIZED) XOR
Contro/

¢ =1 (true) activates Not t *
) ® [t) = [ct)

/ XOR / Mod 2 add

Tarqet
627 \U

Cnot is |c)|t) — |c)|c D t)

00 01 10 11

1 O O o

CroT = = Cnot

S 1 O G
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o o 1O

O — XX —
WARNING l — —

NC has a NotCnot with O




BINIVERSAL QUANTUM CONMIFEHRSE

involving only those gates. We now describe three universality constructions for quantum
computation. These constructions build upon each other, and culminate in a proof that
any unitary operation can be approximated to arbitrary accuracy using Hadamard, phase,
CNOT, and 7/8 gates. You may wonder why the phase gate appears in this list, since it
can be constructed from two 7/8 gates; it is included because of its natural role in the
fault-tolerant constructions described in Chapter 10.

The first construction shows that an arbitrary unitary operator may be expressed ex-
actly as a product of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states. The second construction combines the first
construction with the results of the previous section to show that an arbitrary unitary

operator may be expressed exactly using single qubit and CNOT gates. The third con-
struction combines the second construction with a proof that single qubit operation may

be approximated to arbitrary accuracy using the Hadamard, phase, and /8 gates. This in
turn implies that any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, cNOT, and 7/8 gates.

Our constructions say little about efficiency — how many (polynomially or exponen-
tially many) gates must be composed in order to create a given unitary transform. In
Section 4.5.4 we show that there exist unitary transforms which require exponentially
many gates to approximate. Of course, the goal of quantum computation is to find inter-
esting families of unitary transformations that can be performed efficiently.




Universal Quantum Computing

I. Any dxd unitary U(d) is product of 2x2 U(2) unitary by GAUSSIAN
ELIMINATION!

RO 9 (20— ) i@ubit Rotatiens

Il. General U(2) rotation: Gray coding with cnot’s and one Qubit

rotation

n® cnot gates + one rotation

I11. But Sololvay-Kitaev theorem approx U(2) on single Qubit can be
approximated by Hadamard and pi/8 gates

No of gates € O(log®(1/¢) ¢ ~2



Gaussian Elimination: Rotate Qubit at a time!

Label:

[5n) ® -+~ @ [s2) ® 1)

i=1,---2" — 000,001,010,011,100,101, 111, --- 2" — 1

UX =b —= uijxj:bi

U1L1 + U12T2 + U13T3 + Uy + -+ =
U21T1 + U22X2 + UL3T3 + U24Tg + - -

U31T1 + U322 + UI3TL3 + U34TLg + - -

Now multiply

Uy =

Q
—B*
0
0
0

B

Quk
0
0
0

UhUX =U;b where
0 -

SO = OO

oSO = O O O

0

_ o O O

with

_B*UH‘FO&SUlZ:O — U9 =0



Hypercube - Gray Codes - FFT and all that

- Gray Coding: Adjacent Vertices Differ by one bit

2 011
0 3
000 001
1
6 1110
s 11
4.,«""‘ s
100 [IF 101

Texi Cab distance = Hamming Distance.

L]
0D - 1D 1D —> 2D 2D —» 3D 3D - 4D



Plaquette term for U(1) is an example

For single triangle:
3
> (8% _ _
H = Z [ Z (7.5 + ‘7.7',8+1)2 DY E:(U}; 0ot T 055 0 oi1)

+ -I—
2(01 23033+01802303 )J]
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Universality == Many equivalent LFT

» Different space-time + field discretizations define
exactly the same continuum gquantum field theory

* eg. Lattice different lattice give
identical ¢ = 1/2 CFT — square,

triangle or spherical lattice!

* Fields: Continuum phi 4th field and
single bit Ising fields are equivalent

seExl < ¢, R

* Bosonic Sine Gordon Theory =
Fermionic Thirring Theory

* N = 4 SUSY is dual AdS Gravity



RN UP: O(3) HEISENBERG SPINFM GBS

fCIassicaI O(3) MODEL Quantum antiferromagnet O(3) MODED
SAS G
= /dS exp Z S, S g T’I“[@ g2 P az—|—,u]
& @ i

Warm up with Fermionic Quantum Operator
Sy — ag(x)aijaj () or S¥(z)= al-L (x)a;(z)

{ai(2), aj(2)} = 8ij0uy , {aj(@)aj(@)} =0 , {ai(z),a;(2)} =0

Z = Trexp(—BH). H = Z Tr[S,S,] | s

—

Global Rotation: J = 3 Tr[5S,] = [J JH| =0 B.B. Beard and U-J Wiese
Local Fermion No:  F, = Tr[S,] = [Fy, H] =0 https://arxiv.org/abs/cond-mat/9602164



FERMIONIC QUBIT GATES

~

_J

-
Each Fermion aTa e CLGIT —1 aq = CLTCLT =0
On Eech aubt a'(ef) +810) = 8I1)  a(a|l) + 5]0)) = a|0)
aT—|—a:>X:{(1) (1)} (a—I—aT)2—1:>H:%[_11 ﬂ
| o= r=10 7 puta—1) = 7=} O]
14) I ! (1—a'a) +ala(d+b") — ContrNOT
| B) |A x B)
a) @)
by ) (1—a'ad'd) + a’ad'b(c' + ¢) = Toffoli

Classical Reversible Computing Conserving Energy R. Landauer IBM J
journal of Research and Development, vol. 5, pp. 183-191, 1961



SYMPLIAL/GAUGE ALGEBRA

g
H=2 3 (Tr(B}(z,0)] + Tr(BR(e, ) - ZTfr [Un + U]
(z,x+p)
| | . d .
Example: U(1) Abelian P/Q symplectic b = 71— U = egjp[zﬁ]
operators in Q-basis are db ’

U(N) generalization of Gauge Algebra is
EY =)M/E* =  [E* EP|=2if*P7E"~

[E;,Ul=—E U , |ErU]=-UEg

Er=U'E,U , [UU=0 UUt =1



DISCRETE QUANTUMBSINGS

On each link (x,x + ) introduce 2/N_.complex fermion

a.a) right(+) moving and b;, b;. left(-) moving fluxon

’4 °
LINK. a; . b; 4
gRe U = aiz) b;(x%—,u) : 3l
e 5w
14, a;r'} = 03 {04, b;[} = 03
Local Gaue Operators ) (x) = a;.f (z)a;(x) + - 4
aiaT- aibT-
For SU(3) QCD have SU(6) per Link Lie Algebra { {
bz-aj bzbj



WHAT ABOUT ANTI-SYMMETRIC FERMIONIC FOCK SPACE?

a2

Step #1: PARA-STATISTICS:
D-Theory only require anti-commutator within each a’s and b’s set

~

=

0
T T T il i
[aiaj7apb] [CL aj, p] 0 [az 7 ]
[EL,U] == _EL U same for
e Step #2; Jordan-Wigner:
Apply to Locally to each set of 3 a's and b's.
L CLJ{ :O'i|_ y CL; :—O'TO';_ ) CL; :O'TO'SO';_ same for a —>b

i

i,

PARA-STATISTICS & JORDAN-WIGNER TO THE RESCUE

Simpler than Bravyi and Kitaev "Fermionic Quantum Computation” (2002)



Math Stuff: “Gamma Matrices are Jordan-Wigner”

4
%(H)l — V1727374 = V5

d+<d+2: ﬁ’z-(d) — (03 @792 51 @ Iha, 00 @ I5a)

d
%2421 — Y17Y27Y3 * Yd = Yd+1



KOGUT SUSKIND HAMILTONIAN

H=2 3 (Tr(B}(z,0)] + Tr(BR(e, ) - ZTfr Uo + U
(z,x+p)
| | . d .
Example: U(1) Abelian P/Q symplectic b = 71— U = egjp[zﬁ]
operators in Q-basis are db ’

U(N) generalization of Gauge Algebra is
EY =)M/E* =  [E* EP|=2if*P7E"~

[E;,Ul=—E U , |ErU]=-UEg

Er=U'E,U , [UU=0 UUt =1



BsBING [O TEST REAL TIME QUBIT ALGORIHESIN
gereeicrOUAN TUM LINK GAUGETISIIE@IENE

See Gauge Theory for a Quantum Computer
R. C. Brower, D. Berenstein & H. Kawai (Latice 2020)

e \

i Z z 2 = = i il
H_E Z @, e e Z 77 ® 01y - oEiGRIRY

links,s links,s
1
s S + = = =
I [O-s ®Os ®O-s +Os ®03 ®Os]

k 262 A J

Few very simple kernels in Trotter factorization into
Gauge invariant Unitary operators with very few Qubit width


https://arxiv.org/abs/2002.10028

Choose 2 + 1 on U(1) Hamiltonian on a Triangular spacial lattice

To evaluate lattice: alternate between
two coloring of triangles.

_|_
g +
3 0-2 + h.c
>
_|_
04

Total: about 15-20 consecutive gate operations (coherence time) per qubit per Trotter step

Estimate of current machines: 3 Trotter steps on Lattice



Extra dimension builds local field rep. from
XYZ ferromagnetic chain
Using J+®U_+J_®a+:%(0x®0m+ay®0y)
(0" ®14+1®0%)* =2(1+0°Q0")

The each links between two triangle are coupled by 2 Qubit ferromagnetic
interaction operator to align them.

Halign = —Qqlign Z(Ux ® o’ + o ®0y) — Balignzaz ® o”

Os—l—l

4

> XY couoling of gauge fixed extra _
dimension squares! E”2 coupling term

»



Plaquette

[
>

Still gauge invariant if broken
vertically: few operations per qubit.

(Not all to all)
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Parameter fitting Two Triangle couple Hamiltonian
needing 6 Qubits & eigenvalues of 64x64 matrices

Just XXZ piece: need to
avoid level crossings,
close to XXX is better

Together with plaquette operator:
Gap persists: suggests simulation will
not be too polluted by UV

N R [} oo
L e e e e I N LIS e e e e

L | 1 1 1 | I T It
0.2 0.4 0.6 0.8 1.0




HA xotT Rt Qo +0 o™ o~

Un(t) = exp(—itHA)

This is a rotation on a 2-plane of 8 dimensional Hilbert space (+++) rotating into (- - -).

Can be written in terms of a double control gate after some bit flips which need to be undone

i

X

N

X

N

i

|

Ry

|

Depending on details of architecture: it can take anywhere between
5 computing cycles and 20 (depth).

For experts: May be done efficiently with ancillas if Toffoli gates available.



Now we have the spin model
For single triangle:

AN A

HE HB

O ) O
g a i
-3 [ (5 S el Dt s o)

S y,

(1
+ 7+ - = -
- 2 (01,8 09,s 03,3 + 01,5 92,5 US,S)J ]

A

Hxy



Now we have the spin model
For single triangle:

g2 3 o 3
2 J z z 2 + +
H = [ 9 (055 + 05 s11) +292 Z( s Ojst1t 05 0fsi)
S J=1 J=1
_ (ot of. o+
9 01 23033 013023038

We are interested in time evolution:
(1)) = e (0))
~ (e_iﬁE%Q_iﬁXY%Q_iﬁB%) |¢(O)>

with t/n small enough.

5



Electric term:
For single triangle:

f2 3
~ g @ + +
B3 [ 2t ot s D oh o+ o5 o)
S

1
o @(Jf—s U;:s O-i—%i:s + Jl_,s 02_,3 0-3_,3) ]
Circuit
b )
IR
—iHr0

€



Coupling term:
For single triangle:

b
(87
+
iYLt o g (e o + 0 o)
Jl 1=1

1
—5 (o ik 5 033+01802303 ) ]

. Circuit
| oy |

IR
—iHx 0




Plaquette term:
For single triangle:

9 3
v g 2 @ + - 5t
= [ 9 Z((’Jzys + 05 s1)” + 242 Z(%s Ojst1 T 04505 511)
- .

+ S+t LT - = L
2 (01,8 09,5 935 + 01,5 92,5 US,S)J ]

Circuit

71

. | 1
X

T RX (0) T

N
—iHp6
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Overall one Trotter step looks like:

parallel parallel
r - N\ A N
-
E, XY,
layer 1 < E, XY, A
- E3 XY3
e
layer 2 < A
-

50 “physical” qubits per step.



Trotterization

n
U(t) — (e_iHE%Q_iHXY%Q_iHB%>

100 -

0.75

0.50 -

0.25 -

Alt)

-0.25 A

—-0.50 A

-0.75 A

-1.00 -

0.00 -

A A
\ ” - \
‘\ ] A‘ r’ 4
I %
‘\ A\’ \ !
wix \ II
I
\\ X /
x \ '
A K
\ !
Ay
\ g
\
T T
0 2 4 6 10

evolution time

- = exact
x Trotterization: At=0.5
A Trotterization: At=0.125

Computation of <0|U(t)|0> (exact).
Around t/n = 0.1 for useful simulation.



On the actual IBM Q machine
Again,U(t) = (e—iﬁE%e—iﬁXY%e—iﬁB%> (t=0.1, n=1)

The  p(t) = diag(U(t) |0) (0| U (1))
distribution

Probabilities

o
[

0.25 1

o
Jo
=}
N
o
Jo
=}
N
o
o

0.00 -




What | have to work on from now

Theory side:

e What if we extend the model to the spacial
direction?

L,xZ, lattice equivalent to C,xC, torus with
PBC (i.e. quotient mapping)



The architectiire of the lihrarv:

User

modelin fo

coec [ [icienls, lislo foperalors, el

Visual /analyzed data

Our Library

python

Data

visualization ele

Model info

Storage

. C'ompute malriz i . .
FEigensolver F ) Quantum circuil
representation
(Feast) sl
Intel MKL [BM qiskt

malrix operations
eigensolver

qiskit Aer/
QASM

IBM Q
BLAS/LAPACK

IBM-Q Links for Excellent Python Tutorials, compiler and simulators

https://medium.com/quantum1net/richard-feynman-and-the-birth-of-quantum-computing-6fe4a0f5fcc7



Also Developing Quantum Computing for Hyperbolic Lattice Hamiltonian
using triangle group to do strong couponing AdS?CFT or Gravity/Gauge
Duality in MInkowski

anti-de Sitter space B | i anti-de Sitter space
conformal conformal

boundary boundary

Strong Coupling
Spin System

See Lattice Setup for Quantum Field Theory in AdS2
Richard C. Brower, Cameron V. Cogburn, A. Liam Fitzpatrick, Dean Howarth,

Chung-I Tan https://arxiv.org/abs/1912.07606



https://arxiv.org/search/hep-th?searchtype=author&query=Brower,+R+C
https://arxiv.org/search/hep-th?searchtype=author&query=Cogburn%2C+C+V
https://arxiv.org/search/hep-th?searchtype=author&query=Fitzpatrick%2C+A+L
https://arxiv.org/search/hep-th?searchtype=author&query=Howarth%2C+D
https://arxiv.org/search/hep-th?searchtype=author&query=Tan%2C+C
https://arxiv.org/abs/1912.07606

Questions?



