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The first “digital computer” in Babylonia about 2400 b.c.

The first “analog computer”: Antikythera for determining the
position of celestial bodies, Crete, about 100 b.c.



The first programmable computer: Charles Babbagge’s
(1791-1871) “difference engine” was realized by his son.

The first software developer: Ada Lovelace (1815-1852).



Konrad Zuse’s (1910-1992) relay-driven computer Z3

From the vacuum-tube ENIAC to the IBM Blue Gene



Pioneers of theoretical computer science:
John von Neumann (1903-1992) and Alan Turing (1912-1954)

Model of a universal Turing machine



RSA encryption: multiplication is easy, factorization is hard.

RSA decryption challenge in 1991:
factorize the following 174-digit number with 576 bits

RSA576 = 18819881292060796383869723946165043980716356

33794173827007633564229888597152346654853190

60606504743045317388011303396716199692321205

734031879550656996221305168759307650257059

= 39807508642406493739712550055038649119906436

2342526708406385189575946388957261768583317

∗ 47277214610743530253622307197304822463291469

5302097116459852171130520711256363590397527

This problem was solved only in 2003 by two mathematicians
in Bonn using very large computer resources.

Only in 2009, when the challenge was no longer active, the
232-digit number RSA768 with 768 bits has finally been
factorized.
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Moore’s law: “Every two years the number of transistors per
area increases by a factor of 2.”

Modern micro chips consist of several billions of transistors,
each about 10−8 m in size. This is already close to the
quantum mechanical limit set by the size of individual atoms.



From bits to qubits

|Ψ〉 = a|1〉+ b|0〉, |a|2 + |b|2 = 1

Entangled state of two qubits

|Ψ〉 =
1√
2

(|10〉+ |01〉)
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Richard Feynman’s vision of 1982

“I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better make it quantum mechanical, and by
golly it’s a wonderful problem, because it doesn’t look so easy.”



A universal quantum computer (David Deutsch’s quantum
analog of a classical Turing machine) could use Peter Shor’s
algorithm to solve the factorization problem.

David Deutsch Peter Shor

Until today, only 15 = 3 · 5 has been correctly factorized by a
quantum computer, at least in about 50 % of all trials.
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Ion traps as a digital quantum computer?

Franklin Medal 2010: I. Cirac, D. Wineland, P. Zoller



Bose-Einstein condensation in ultra-cold atomic gases

Eric Cornell, Carl Wieman, Wolfgang Ketterle, 1995



Ultra-cold atoms in optical lattices as analog quantum
simulators

Transition from a superfluid to a Mott insulator

Theodor Hänsch Immanuel Bloch

Can one understand high-Tc superconductivity in this way?
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Richard Feynman, Int. J. Theor. Phys. 21 (1982) 467

“Can quantum systems be probabilistically simulated by a classical
computer? This is the hidden variable problem: it is impossible to
represent the results of quantum mechanics with a classical universal
device.”



The spin 1
2

quantum Heisenberg model

Quantum spins [Sa
x , S

b
y ] = iδxyεabcS

c
x and their Hamiltonian

H = J
∑
〈xy〉

~Sx · ~Sy

Partition function at inverse temperature β = 1/T

Z = Tr exp(−βH)



Low-energy effective action for antiferromagnetic magnons

S [~e] =

∫ β

0
dt

∫
d2x

ρs
2

(
∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e

)

Fit to analytic predictions of effective theory
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Optical lattice quantum simulation of quantum spin systems

J. Simon, W. S. Bakir, R. Ma, M. E. Tal, P. M. Preis, M. Greiner,
Nature 472 (2011) 307.



Homework 1:
Show that the Heisenberg Hamiltonian H commutes with the
total spin ~S

H = J
∑
〈xy〉

~Sx · ~Sy , ~S =
∑
x

~Sx .

Show that ferromagnetic spin waves |p1p2〉 are eigenstates of
H and determine their energy-momentum dispersion relation,

|p1p2〉 =
∑
x

exp(i(p1x1 + p2x2))S+
x | ↑↑ . . . ↑〉.

Some important lessons from lecture 1:

• Quantum computers or quantum simulators are potentially much
more powerful than classical computers.
• The Heisenberg quantum spin model in thermal equilibrium can
be simulated very efficiently using classical computers.
• The collective dynamics of discrete quantum spin degrees of
freedom can give rise to an emergent quantum field theory for the
low-energy spin wave Goldstone boson excitations.
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Antiferromagnetic precursors of high-Tc superconductors

LaCuO YBaCuO



Properties of cuprates

Temperature-dependence of resistivity
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Phase diagrams of QCD and of doped antiferromagnets

T

chemical potential

QCD phase diagram

hadronic
phase color superconductor

Quark-gluon plasma

T

strange metal

Phase diagram of cuprates

antiferro-
magnetic
phase

high-temperature
superconductor

hole concentration



Correspondences between QCD and Antiferromagnetism
QCD Antiferromagnetism

broken phase hadronic vacuum antiferromagnetic phase
global symmetry chiral symmetry spin rotations

symmetry group G SU(2)L ⊗ SU(2)R SU(2)s
unbroken subgroup H SU(2)L=R U(1)s

Goldstone boson pion magnon
Goldstone field in G/H U(x) ∈ SU(2) ~e(x) ∈ S2

order parameter chiral condensate staggered magnetization
coupling strength pion decay constant Fπ spin stiffness ρs
propagation speed velocity of light spin-wave velocity c
conserved charge baryon number U(1)B electric charge U(1)Q
charged particle nucleon or antinucleon electron or hole
long-range force pion exchange magnon exchange

dense phase nuclear or quark matter high-Tc superconductor
microscopic description lattice QCD Hubbard or t-J model

effective description chiral perturbation magnon effective
of Goldstone bosons theory theory
effective description baryon chiral magnon-hole

of charged fields perturbation theory effective theory



The Hubbard Model for doped antiferromagnets

H = −t
∑
〈xy〉

(c†xcy + c†ycx) + U
∑
x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

reduces to the Heisenberg model at half-filling for U � t

H = J
∑
〈xy〉

~Sx · ~Sy

Important open question:
Does the Hubbard model explain high-Tc superconductivity?



The Hubbard Model for doped antiferromagnets

H = −t
∑
〈xy〉

(c†xcy + c†ycx) + U
∑
x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

reduces to the Heisenberg model at half-filling for U � t

H = J
∑
〈xy〉

~Sx · ~Sy

Important open question:
Does the Hubbard model explain high-Tc superconductivity?



The Hubbard Model for doped antiferromagnets

H = −t
∑
〈xy〉

(c†xcy + c†ycx) + U
∑
x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

reduces to the Heisenberg model at half-filling for U � t

H = J
∑
〈xy〉

~Sx · ~Sy

Important open question:
Does the Hubbard model explain high-Tc superconductivity?



The Hubbard Model for doped antiferromagnets

H = −t
∑
〈xy〉

(c†xcy + c†ycx) + U
∑
x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

reduces to the Heisenberg model at half-filling for U � t

H = J
∑
〈xy〉

~Sx · ~Sy

Important open question:
Does the Hubbard model explain high-Tc superconductivity?



Outline
LECTURE 1:
A Brief History of Computing

Pioneers of Quantum Computing and Quantum Simulation

Classical and Quantum Simulations of Quantum Spin Systems

LECTURE 2:
High-Temperature Superconductors versus QCD

The Nature of the Sign Problem

From Wilson’s Lattice Gauge Theory to Quantum Link Models

LECTURE 3:
Quantum Simulators for Abelian Lattice Gauge Theories

Non-Abelian Quantum Link Models

Quantum Simulators for non-Abelian Gauge Theories

LECTURE 4:
Quantum Simulators for CP(N − 1) Models

Continuum Limit of Quantum Link QCD

References and Conclusions



Path integral

Zf = Tr[exp(−εH1) exp(−εH2)... exp(−εHM)]N

=
∑
[n]

Sign[n] exp(−S [n])

X

T − +U µ
2

−
2d

2
ε t

tε
2

sinh(

exp(−ε[ ])

exp(− [ε −
2
U −

2d

µ
− ])

)

)cosh(



Sign problem of fermionic path integrals

Zf = Tr exp(−βH) =
∑
[n]

Sign[n] exp(−S [n]) , Sign[n] = ±1

Average sign is exponentially small

〈Sign〉 =

∑
[n] Sign[n] exp(−S [n])∑

[n] exp(−S [n])
=

Zf

Zb
= exp(−βV∆f )

The statistical error is exponentially large

σSign
〈Sign〉

=

√
〈Sign2〉 − 〈Sign〉2
√
N〈Sign〉

=
exp(βV∆f )√

N
.

Some very hard sign problems are NP complete

M. Troyer, UJW, Phys. Rev. Lett. 94 (2005) 170201.



Homework 2:
Show that the anti-commutation relations
{c†x ,s , cy ,s′} = δxyδss′ of fermionic creation and annihilation
operators imply angular momentum commutation relations

[Sa
x , S

b
y ] = iδxyεabcS

c
x ,

~Sx =
∑
x

c†x
~σ

2
cx , cx =

(
cx↑
cx↓

)
.

Homework 3:
Show that the Hubbard Hamiltonian H commutes with the
total spin ~S and with the particle number N

H = −t
∑
〈xy〉

(c†xcy + c†ycx) + U
∑
x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)
~S =

∑
x

~Sx =
∑
x

c†x
~σ

2
cx , N =

∑
x

nx =
∑
x

c†xcx .
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Kenneth Wilson’s lattice QCD describes confinement of quarks
and gluons inside protons und neutrons

and confirms the experimentally measured mass spectrum



Can heavy-ion collision physics or nuclear astrophysics benefit
from quantum simulations in the long run?



Richard Feynman’s vision of 1982

“It does seem to be true that all the various field theories have the same
kind of behavior, and can be simulated in every way, apparently, with
little latticeworks of spins and other things.”



Different descriptions of dynamical Abelian gauge fields:
Maxwell’s classical electromagnetic gauge fields

~∇ · ~E (~x , t) = ρ(~x , t), ~∇ · ~B(~x , t) = 0, ~B(~x , t) = ~∇× ~A(~x , t)

Quantum Electrodynamics (QED) for perturbative treatment

Ei = −i ∂
∂Ai

, [Ei (~x),Aj(~x
′)] = iδijδ(~x−~x ′),

[
~∇ · ~E − ρ

]
|Ψ[A]〉 = 0

Wilson’s U(1) lattice gauge theory for classical simulation

Uxy = exp

(
ie

∫ y

x
d~l · ~A

)
= exp(iϕxy ) ∈ U(1), Exy = −i ∂

∂ϕxy
,

[Exy ,Uxy ] = Uxy ,

[∑
i

(Ex ,x+î − Ex−î ,x)− ρ

]
|Ψ[U]〉 = 0

U(1) quantum link models for quantum simulation

Uxy = S+
xy , U†xy = S−xy , Exy = S3

xy ,

[Exy ,Uxy ] = Uxy , [Exy ,U
†
xy ] = −U†xy , [Uxy ,U

†
xy ] = 2E †xy



Hamiltonian formulation of Wilson’s U(1) lattice gauge theory

U = exp(iϕ), U† = exp(−iϕ) ∈ U(1)

Electric field operator E

E = −i∂ϕ, [E ,U] = U, [E ,U†] = −U†, [U,U†] = 0

Generator of U(1) gauge transformations

Gx =
∑
i

(Ex−î ,i − Ex ,i ), [H,Gx ] = 0

U(1) gauge invariant Hamiltonian

H =
g2

2

∑
x ,i

E 2
x ,i −

1

2g2

∑
x ,i 6=j

(Ux ,iUx+î ,jU
†
x+ĵ ,i

U†x ,j + h.c.)

operates in an infinite-dimensional Hilbert space per link



U(1) quantum links from spins 1
2

U = S1 + iS2 = S+, U
† = S1− iS2 = S−

r r
x x+ î

Ex,i

Ux,i

Electric flux operator E

E = S3, [E ,U] = U, [E ,U†] = −U†, [U,U†] = 2E

Gauss law

Ring-exchange plaquette Hamiltonian

H = J

H = 0

D. Horn, Phys. Lett. B100 (1981) 149
P. Orland, D. Rohrlich, Nucl. Phys. B338 (1990) 647
S. Chandrasekharan, UJW, Nucl. Phys. B492 (1997) 455



Hamiltonian with Rokhsar-Kivelson term

H = −J

[∑
�

(U� + U†�)− λ
∑
�

(U� + U†�)2

]

Phase diagram
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D. Banerjee, F.-J. Jiang, P. Widmer, UJW, JSTAT (2013) P12010.



Energy density of charge-anti-charge pair Q = ±2
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Homework 4:
Show that the Hamiltonian of the 2-d U(1) quantum link
model commutes with the local generators of gauge
transformations Gx =

∑
i(Ex−î ,i − Ex ,i)

H = − 1

2g2

∑
x ,i 6=j

(Ux ,iUx+î ,jU
†
x+ĵ ,i

U†x ,j + h.c.).

Some important lessons from lecture 2:

• QCD shares some qualitative features with high-temperature
superconductors.
• Wilson’s lattice QCD allows the precise determination of static
hadron properties using Monte Carlo simulations. It also allows to
simulate QCD at finite temperature. Simulations of dynamical
processes or of the physics at non-zero baryon density suffer from
very severe sign problems.
• Gauge theories with exact continuous gauge symmetry can be
formulated in terms of discrete quantum link degrees of freedom.
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