Nuclear structure (and reactions) with Quantum Computers - IV

Alessandro Roggero

figure credit: μ BooNE collab.

figure credit: IBM

QC and QIS for NP

JLAB - 18 March, 2020

The plan for today

- nuclear dynamics, computation of scattering cross sections
 - EXAMPLE: neutrino-⁴⁰Ar cross section for DUNE
 - inclusive scattering and the response function
 - calculation of two-point functions
 - direct calculation of response in frequency space
- complexity of these calculations, can we actually run them on current/near-term NISQ devices?

advanced algorithms

- Fermionic Swap Networks
- Linear Combination of Unitaries

- Amplitude Amplification
- Qubitization

The plan for today

- nuclear dynamics, computation of scattering cross sections
 - EXAMPLE: neutrino-⁴⁰Ar cross section for DUNE
 - inclusive scattering and the response function
 - calculation of two-point functions
 - direct calculation of respone in frequency space
- complexity of these calculations, can we actually run them on current/near-term NISQ devices?

advanced algorithms

- Fermionic Swap Networks
- Linear Combination of Unitaries

- Amplitude Amplification
- Qubitization

Final recap of first day

- quantum computers can simulate efficiently the time-evolution operator $U(\tau) = \exp(i\tau H)$ for *r*-local Hamiltonians
 - for target error ϵ this requires $\mathcal{O}(\mathsf{poly}(n,\tau,1/\epsilon)4^r)$ gates
 - Jordan Wigner on n qubits leads to n-local terms!
 - SPOILER: this might not be a problem in practice
 - tomorrow we'll generalize this and find better scaling
- 2 if we can prepare an energy eigenstate $|\phi\rangle$ we can use this to measure it's phase with accuracy Δ using a total propagation time $\tau\sim 1/\Delta$
- (3) if $|\Psi\rangle$ has overlap $\alpha = |\langle \phi |\Psi\rangle|^2$, we just add $\mathcal{O}(1/\alpha)$ repetitions

Problem of non-locality of Jordan-Wigner mapping

The Jordan-Wigner mapping stores the information about the fermionic parity into strings of Z operators between fermionic modes:

$$a_{p}^{\dagger}a_{q} = \frac{X_{p}X_{q} + Y_{p}Y_{q}}{2} \left(Z_{p+1} \cdots Z_{q-1}\right)$$

This leads to large CNOT circuits to compute the parity, for instance

When executing the full propagator many phases cancel [Hastings et al. (2014)]

$$U_1(\tau) = \prod_{p,q} \exp(i\tau h_{p,q} a_p^{\dagger} a_q)$$

Problem of non-locality of Jordan-Wigner mapping II

When executing the full propagator many phases cancel [Hastings et al. (2014)]

$$U_1(\tau) = \prod_{p,q}^n \exp(i\tau h_{p,q} a_p^{\dagger} a_q) = \prod_{p,q}^n u_{p,q}(\tau)$$

Fermionic Swap Network

Babbush et al. (2017), Kivlichan et al. (2018)

We can implement $U_1(\tau)$ exactly using only $3\binom{n}{2}$ two qubit gates

٩	n layers of $\frac{n-1}{2}$ two qubit gates				
	$W_{i,i+1} =$	$u_{i,i+}$	$-1(\tau$	fs	WAP
	$f_{SWAP} =$	$\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{pmatrix} 0\\0\\0\\-1 \end{pmatrix}$

• final qubit order is reversed

Final recap of first day

- quantum computers can simulate efficiently the time-evolution operator $U(\tau) = \exp(i\tau H)$ for *r*-local Hamiltonians
 - for target error ϵ this requires $\mathcal{O}(\mathsf{poly}(n,\tau,1/\epsilon)4^r)$ gates
 - Jordan Wigner on n qubits leads to n-local terms!
 - SPOILER: this might not be a problem in practice
 - tomorrow we'll generalize this and find better scaling
- 2 if we can prepare an energy eigenstate $|\phi\rangle$ we can use this to measure it's phase with accuracy Δ using a total propagation time $\tau\sim 1/\Delta$
- (3) if $|\Psi\rangle$ has overlap $\alpha = |\langle \phi |\Psi\rangle|^2$, we just add $\mathcal{O}(1/\alpha)$ repetitions

Time evolution: short time approximations

Baker-Campbell-Hausdorff formula

$$\exp\left(it\left(A+B\right)\right) = \exp\left(itA\right)\exp\left(itB\right) + \mathcal{O}\left([A,B]t^2\right)$$

 $\bullet\,$ can be extended to large time intervals by slicing [0,t] into L intervals

$$\exp\left(it\left(A+B\right)\right) = \left[\exp\left(i\frac{t}{L}A\right)\exp\left(i\frac{t}{L}B\right)\right]^{L} + \mathcal{O}\left([A,B]\frac{t^{2}}{L}\right)$$

and we need: $L = \mathcal{O}\left(t^2/\epsilon\right)$

Time evolution: short time approximations

Baker-Campbell-Hausdorff formula

$$\exp\left(it\left(A+B\right)\right) = \exp\left(itA\right)\exp\left(itB\right) + \mathcal{O}\left([A,B]t^2\right)$$

• can be extended to large time intervals by slicing [0, t] into L intervals

$$\exp\left(it\left(A+B\right)\right) = \left[\exp\left(i\frac{t}{L}A\right)\exp\left(i\frac{t}{L}B\right)\right]^{L} + \mathcal{O}\left([A,B]\frac{t^{2}}{L}\right)$$

and we need: $L = \mathcal{O}\left(t^2/\epsilon\right)$

• we can define higher order formulas with better scaling Suzuki (1991)

$$S_2(t) = \exp\left(i\frac{t}{2}B\right)\exp\left(itA\right)\exp\left(i\frac{t}{2}B\right) \Rightarrow \epsilon = \mathcal{O}\left(t^3\right)$$

In general formulas with error $\mathcal{O}(t^{\gamma})$ will require $L = \mathcal{O}\left(t^{\frac{\gamma}{\gamma-1}}\left(\frac{1}{\epsilon}\right)^{\frac{1}{\gamma-1}}\right)$

• is it possible to get a better scaling? Say $\mathcal{O}\left(t + \log(1/\epsilon)\right)$?

Alessandro Roggero

Efficient time evolution with qubitization

Assume the Hamiltonian can be decomposed efficiently as

$$H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha_k > 0$$

EFFICIENT: the number of terms L = poly(n), gate cost of U_k is poly(n)

Time evolution using Quantum Signal Processing Low & Chuang (2016) The time evolution operator U(t) can be approximated with error less than ϵ using $\mathcal{O}(t + \log(1/\epsilon))$ calls to a quantum operation, the **qubiterate** W_Q , that can be implemented with $\mathcal{O}(\text{poly}(n))$ gates

Efficient time evolution with qubitization

Assume the Hamiltonian can be decomposed efficiently as

$$H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha_k > 0$$

EFFICIENT: the number of terms L = poly(n), gate cost of U_k is poly(n)

Time evolution using Quantum Signal Processing Low & Chuang (2016) The time evolution operator U(t) can be approximated with error less than ϵ using $\mathcal{O}(t + \log(1/\epsilon))$ calls to a quantum operation, the **qubiterate** W_Q , that can be implemented with $\mathcal{O}(\text{poly}(n))$ gates

• is this the limit or can we hope for something better?

No Fast-Forward Theorem

Atia & Aharonov (2017)

Without additional details on the Hamiltonian, you can't beat $\mathcal{O}(t)$

Assume the Hamiltonian can be decomposed efficiently as

$$H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha_k > 0$$

and define $\alpha = \sum_{k=1}^{L} \alpha_k \ge ||H||$.

Linear Combination of Unitaries (LCU)

We can apply the operation $H_{\alpha} = H/\alpha$ to a state $|\Psi\rangle$ with probability $P = \langle \Psi | H^2 | \Psi \rangle / \alpha^2$, $m = \lceil \log_2(L) \rceil$ ancilla qubits and $\mathcal{O}(\mathsf{poly}(L, n))$ gates

Childs & Wiebe (2012)

Assume the Hamiltonian can be decomposed efficiently as

$$H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha_k > 0$$

and define $\alpha = \sum_{k=1}^{L} \alpha_k \ge ||H||$.

Linear Combination of Unitaries (LCU)

 V_S

We can apply the operation $H_{\alpha} = H/\alpha$ to a state $|\Psi\rangle$ with probability $P = \langle \Psi | H^2 | \Psi \rangle / \alpha^2$, $m = \lceil \log_2(L) \rceil$ ancilla qubits and $\mathcal{O}(\mathsf{poly}(L,n))$ gates

$$\begin{array}{ll} \text{prepare} \quad V_P \left| 0 \right\rangle_m = \sum_{k=0}^{L-1} \sqrt{\frac{\alpha_{k+1}}{\alpha}} \left| k \right\rangle & \text{select} \quad V_S = \sum_{k=0}^{L-1} \left| k \right\rangle \langle k | \otimes U_{k+1} \\ & \text{the final state is} \\ \left| 0 \right\rangle_m - V_P -$$

where $\langle 0^{\perp}|0\rangle_m = 0.$

Alessandro Roggero

Ψ

Childs & Wiebe (2012)

$$H = \sum_{k=1}^L \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^L \alpha_k \geq \|H\|$$

Linear Combination of Unitaries (LCU)

Childs & Wiebe (2012)

We can apply the operation $H_{\alpha} = H/\alpha$ to a state $|\Psi\rangle$ with probability $P = \langle \Psi | H^2 | \Psi \rangle / \alpha^2$, $m = \lceil \log_2(L) \rceil$ ancilla qubits and $\mathcal{O}(\mathsf{poly}(L, n))$ gates

Expand time-evolution operator as Taylor series

$$\exp(itH) \approx \sum_{k=0}^{K} \frac{(it)^k}{k!} H^k = \sum_{k=0}^{K} \frac{(it)^k}{k!} \sum_{q_0 \cdots q_k=1}^{L} \alpha_{q_0} \cdots \alpha_{q_k} U_{q_0} \cdots U_{q_k}$$

$$H = \sum_{k=1}^L \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^L \alpha_k \geq \|H\|$$

Linear Combination of Unitaries (LCU)

Childs & Wiebe (2012)

We can apply the operation $H_{\alpha} = H/\alpha$ to a state $|\Psi\rangle$ with probability $P = \langle \Psi | H^2 | \Psi \rangle / \alpha^2$, $m = \lceil \log_2(L) \rceil$ ancilla qubits and $\mathcal{O}(\mathsf{poly}(L, n))$ gates

Expand time-evolution operator as Taylor series

$$\exp(itH) \approx \sum_{k=0}^{K} \frac{(it)^k}{k!} H^k = \sum_{k=0}^{K} \frac{(it)^k}{k!} \sum_{q_0 \cdots q_k=1}^{L} \alpha_{q_0} \cdots \alpha_{q_k} U_{q_0} \cdots U_{q_k}$$

Time evolution with truncated Taylor series

Berry et al. (2015)

We need
$$\mathcal{O}\left(\alpha t \frac{\log(\alpha t/\epsilon)}{\log(\log(\alpha t/\epsilon))}\right)$$
 calls to V_S , V_P costing $\approx \mathcal{O}(L^2)$ gates

• use oblivious amplitude amplification to boost probability $P \approx 1$

Alessandro Roggero

Brassard & Hoyer (1997), Grover (1998)

$$\begin{array}{c|c} |0\rangle_m & -\overline{V_P} \\ \hline V_S & V_S \end{array} \Rightarrow |\Phi\rangle = U |\Psi\rangle |0\rangle_m = \frac{H}{\alpha} |\Psi\rangle |0\rangle_m + \left|0^{\perp}\right\rangle$$

More generally we can consider the situation where

$$|\Phi\rangle = \sin(\theta)|\Psi\rangle + \cos(\theta)|\Psi^{\perp}\rangle$$
,

Brassard & Hoyer (1997), Grover (1998)

$$\begin{array}{c|c} |0\rangle_m & -\overline{V_P} \\ \hline V_S & V_S \end{array} \Rightarrow |\Phi\rangle = U |\Psi\rangle |0\rangle_m = \frac{H}{\alpha} |\Psi\rangle |0\rangle_m + \left|0^{\perp}\right\rangle$$

More generally we can consider the situation where

$$|\Phi\rangle = \sin(\theta)|\Psi\rangle + \cos(\theta)|\Psi^{\perp}\rangle$$
,

Brassard & Hoyer (1997), Grover (1998)

$$\begin{array}{c} |0\rangle_m & -\overline{V_P} \\ |\Psi\rangle & -\overline{V_S} \end{array} \Rightarrow |\Phi\rangle = U |\Psi\rangle |0\rangle_m = \frac{H}{\alpha} |\Psi\rangle |0\rangle_m + \left|0^{\perp}\right\rangle$$

More generally we can consider the situation where

$$|\Phi\rangle = \sin(\theta)|\Psi\rangle + \cos(\theta)|\Psi^{\perp}\rangle$$
,

Brassard & Hoyer (1997), Grover (1998)

$$\begin{array}{c|c} |0\rangle_m & -\overline{V_P} \\ \hline V_S & V_S \end{array} \Rightarrow |\Phi\rangle = U |\Psi\rangle |0\rangle_m = \frac{H}{\alpha} |\Psi\rangle |0\rangle_m + \left|0^{\perp}\right\rangle$$

More generally we can consider the situation where

$$|\Phi\rangle = \sin(\theta)|\Psi\rangle + \cos(\theta)|\Psi^{\perp}\rangle$$
,

Brassard & Hoyer (1997), Grover (1998)

$$\begin{array}{c} |0\rangle_m & -\overline{V_P} \\ |\Psi\rangle & -\overline{V_S} \\ |\Psi\rangle \end{array} \Rightarrow |\Phi\rangle = U \left|\Psi\right\rangle \left|0\right\rangle_m = \frac{H}{\alpha} \left|\Psi\right\rangle \left|0\right\rangle_m + \left|0^{\perp}\right\rangle$$

More generally we can consider the situation where

$$|\Phi\rangle = \sin(\theta)|\Psi\rangle + \cos(\theta)|\Psi^{\perp}\rangle$$
,

then we can use the reflections $R_{\Psi} = \mathbb{1} - 2|\Psi\rangle\langle\Psi|$ and $R_{\Phi} = 2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $|\Psi^{\perp}\rangle$. We have

$$W^n |\Phi\rangle = \sin\left((2n+1)\theta\right)|\Psi\rangle + \cos\left((2n+1)\theta\right)|\Psi^{\perp}\rangle \quad W = R_{\Phi}R_{\Psi}$$

and will need $n \approx \pi/4\theta$ iterations to reach maximum success probability.

Brassard & Hoyer (1997), Grover (1998)

$$\begin{array}{c} |0\rangle_m & -\overline{V_P} \\ |\Psi\rangle & -\overline{V_S} & \overline{V_P} \\ |\Psi\rangle & -\overline{V_S} & -\overline{V_P} \\ \end{array} \Rightarrow |\Phi\rangle = U |\Psi\rangle |0\rangle_m = \frac{H}{\alpha} |\Psi\rangle |0\rangle_m + \left|0^{\perp}\right\rangle$$

More generally we can consider the situation where

$$|\Phi\rangle = \sin(\theta)|\Psi\rangle + \cos(\theta)|\Psi^{\perp}\rangle$$
,

then we can use the reflections $R_{\Psi} = \mathbb{1} - 2|\Psi\rangle\langle\Psi|$ and $R_{\Phi} = 2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $|\Psi^{\perp}\rangle$. We have

$$W^n |\Phi\rangle = \sin\left((2n+1)\theta\right)|\Psi\rangle + \cos\left((2n+1)\theta\right)|\Psi^{\perp}\rangle \quad W = R_{\Phi}R_{\Psi}$$

and will need $n \approx \pi/4\theta$ iterations to reach maximum success probability.

Oblivious amplitude amplification

Berry et. al (2014)

For unitary H we only need $W = -UR_0 U^{\dagger}R_0$ where R_0 reflects over $|0\rangle_m$

Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015) $H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^{L} \alpha_k \ge \|H\|$

• Linear Combination of Unitaries (LCU)

$$\begin{array}{c} |0\rangle_m & -\overline{V_P} \\ |\Psi\rangle & -\overline{V_S} \\ |\Psi\rangle \end{array} \Rightarrow |\Phi\rangle = U \left|\Psi\right\rangle |0\rangle_m = \frac{H}{\alpha} \left|\Psi\right\rangle |0\rangle_m + \left|0^{\perp}\right\rangle$$

 \Rightarrow the algorithm succeeds with probability $P=\langle\Psi|H^2|\Psi\rangle/\alpha^2.$

Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015) $H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^{L} \alpha_k \ge \|H\|$

• Linear Combination of Unitaries (LCU)

$$\begin{array}{c} |0\rangle_m & -\overline{V_P} \\ |\Psi\rangle & -\overline{V_S} \end{array} \Rightarrow |\Phi\rangle = U \left|\Psi\right\rangle \left|0\right\rangle_m = \frac{H}{\alpha} \left|\Psi\right\rangle \left|0\right\rangle_m + \left|0^{\perp}\right\rangle$$

 \Rightarrow the algorithm succeeds with probability $P=\langle\Psi|H^2|\Psi\rangle/\alpha^2.$

• Amplitude Amplification can boost probability at cost $\mathcal{O}\left(1/\sqrt{P}
ight)$

Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015) $H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^{L} \alpha_k \ge \|H\|$

• Linear Combination of Unitaries (LCU)

$$\begin{array}{c} |0\rangle_m \quad \hline V_P \quad \hline V_P \quad \hline \\ |\Psi\rangle \quad \hline \end{array} \Rightarrow |\Phi\rangle = U \left|\Psi\right\rangle \left|0\right\rangle_m = \frac{H}{\alpha} \left|\Psi\right\rangle \left|0\right\rangle_m + \left|0^{\perp}\right\rangle$$

 \Rightarrow the algorithm succeeds with probability $P = \langle \Psi | H^2 | \Psi \rangle / \alpha^2$.

- Amplitude Amplification can boost probability at cost $\mathcal{O}\left(1/\sqrt{P}
 ight)$
- Time evolution with Taylor exp. can achieve scaling $\mathcal{O}\left(\alpha t \log(\alpha t/\epsilon)\right)$

Standard Trotter-like approaches can only give $\mathcal{O}\left(t^{1+\frac{1}{\eta}}/\epsilon^{\frac{1}{\eta}}\right)$ with $\eta \geq 1$

Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015) $H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^{L} \alpha_k \ge \|H\|$

• Linear Combination of Unitaries (LCU)

$$\begin{array}{c} |0\rangle_m \quad \hline V_P \quad \hline V_P \quad \hline \\ |\Psi\rangle \quad \hline \end{array} \Rightarrow |\Phi\rangle = U \left|\Psi\right\rangle \left|0\right\rangle_m = \frac{H}{\alpha} \left|\Psi\right\rangle \left|0\right\rangle_m + \left|0^{\perp}\right\rangle$$

 \Rightarrow the algorithm succeeds with probability $P=\langle\Psi|H^2|\Psi\rangle/\alpha^2.$

- Amplitude Amplification can boost probability at cost $\mathcal{O}\left(1/\sqrt{P}
 ight)$
- Time evolution with Taylor exp. can achieve scaling $\mathcal{O}\left(\alpha t \log(\alpha t/\epsilon)\right)$

Standard Trotter-like approaches can only give $\mathcal{O}\left(t^{1+rac{1}{\eta}}/\epsilon^{rac{1}{\eta}}
ight)$ with $\eta\geq 1$

• use Oblivious Amplitude Amplification to achieve this deterministically with much smaller prefactors (simpler reflection operators)

Alessandro Roggero

Back to qubitization

Low & Chuang (2016)

$$\begin{array}{c|c} |0\rangle_m & -\overline{V_P} \\ |\Psi\rangle & -\overline{V_S} \end{array} \xrightarrow{V_P^{\dagger}} \Rightarrow |\Phi\rangle = U |\Psi\rangle |0\rangle_m = \frac{H}{\alpha} |\Psi\rangle |0\rangle_m + \left|0^{\perp}\right\rangle$$

If we denote $\left|\phi_{P}
ight
angle=V_{P}\left|0
ight
angle_{m}$ the **qubiterate** W_{Q} can be defined as

$$W_Q = (2|\phi_P\rangle\langle\phi_P|-\mathbb{1}) V_S$$

one can show that if $H/\alpha = \sum_n \lambda_n |n\rangle \langle n|$ then we can write

$$W_Q \left| n \right\rangle \left| \phi_P \right\rangle = W_Q \left| P_n \right\rangle = \lambda_n \left| P_n \right\rangle + \sqrt{1 - \lambda_n^2} \left| P_n^\perp \right\rangle$$

for every eigenstate $\Rightarrow W_Q$ generates rotations in $span\{|P_n\rangle, |P_n^{\perp}\rangle\} \forall n$

$$W_Q = \bigoplus_n \begin{pmatrix} \lambda_n & -\sqrt{1-\lambda_n^2} \\ \sqrt{1-\lambda_n^2} & \lambda_n \end{pmatrix} = \bigoplus_n e^{iY \operatorname{arccos}(\lambda_n)}$$

What is this useful for?

$$W_Q = \bigoplus_n \begin{pmatrix} \lambda_n & -\sqrt{1-\lambda_n^2} \\ \sqrt{1-\lambda_n^2} & \lambda_n \end{pmatrix} = \bigoplus_n e^{iY \arccos(\lambda_n)} \sim e^{i\widetilde{Y} \arccos\left(\frac{H}{\alpha}\right)}$$

 we have a 2D invariant subspace for every eigenvalue ⇒ powers of the qubiterate W_Q will generate rotations in these subspaces

Quantum Signal Processing

We can use this to generate polynomial functions of the Hamiltonian. Take

$$W_Q(\theta) = \bigoplus_n \begin{pmatrix} \lambda_n & -ie^{-i\theta}\sqrt{1-\lambda_n^2} \\ ie^{i\theta}\sqrt{1-\lambda_n^2} & \lambda_n \end{pmatrix} = R(\theta)W_Q R^{\dagger}(\theta)$$

where $R(\theta)$ uses V_P , then we can use this **phased iterate** to generate $\prod_{j=1}^{N} W_Q(\theta_j) = \sum_{j=1}^{N/2} \left[a_j \left(\vec{\theta} \right) + i b_j \left(\vec{\theta} \right) \right] \left(\frac{H}{\alpha} \right)^j$

• (QSP+Taylor) \Rightarrow optimal scaling algorithm for time evolution

Low & Chuang (2016)

What else is this useful for?

$$W_Q = \bigoplus_n \begin{pmatrix} \lambda_n & -\sqrt{1-\lambda_n^2} \\ \sqrt{1-\lambda_n^2} & \lambda_n \end{pmatrix} = \bigoplus_n e^{iY_n \operatorname{arccos}(\lambda_n)} \sim e^{i\widetilde{Y}\operatorname{arccos}\left(\frac{H}{\alpha}\right)}$$

• the spectrum of W_Q is the (almost) the same as the Hamiltonian

$$\forall \lambda_n = E_n / \alpha \quad \text{we have} \quad \eta_{\pm} = \exp\left(i \pm \arccos(\lambda_n)\right)$$

• the qubiterate W_Q can be implemented exactly using $\mathcal{O}(L^2)$ gates

$$H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^{L} \alpha_k \ge \|H\|$$

What else is this useful for?

$$W_Q = \bigoplus_n \begin{pmatrix} \lambda_n & -\sqrt{1-\lambda_n^2} \\ \sqrt{1-\lambda_n^2} & \lambda_n \end{pmatrix} = \bigoplus_n e^{iY_n \operatorname{arccos}(\lambda_n)} \sim e^{i\widetilde{Y}\operatorname{arccos}\left(\frac{H}{\alpha}\right)}$$

• the spectrum of W_Q is the (almost) the same as the Hamiltonian

$$\forall \lambda_n = E_n / \alpha$$
 we have $\eta_{\pm} = \exp\left(i \pm \arccos(\lambda_n)\right)$

• the qubiterate W_Q can be implemented exactly using $\mathcal{O}(L^2)$ gates

$$H = \sum_{k=1}^{L} \alpha_k U_k \quad \text{with} \quad U_k^{\dagger} U_k = \mathbb{1} \quad \text{and} \quad \alpha = \sum_{k=1}^{L} \alpha_k \ge \|H\|$$

Quantum Phase Estimation with no time evolutionBerry et al. (2018)We can use W_Q instead of $\exp(itH)$ to get the energy spectrum

What else is this useful for?

$$W_Q = \bigoplus_n \begin{pmatrix} \lambda_n & -\sqrt{1-\lambda_n^2} \\ \sqrt{1-\lambda_n^2} & \lambda_n \end{pmatrix} = \bigoplus_n e^{iY_n \operatorname{arccos}(\lambda_n)} \sim e^{i\widetilde{Y}\operatorname{arccos}\left(\frac{H}{\alpha}\right)}$$

• the spectrum of W_Q is the (almost) the same as the Hamiltonian

$$\forall \lambda_n = E_n / \alpha$$
 we have $\eta_{\pm} = \exp\left(i \pm \arccos(\lambda_n)\right)$

• the qubiterate W_Q can be implemented exactly using $\mathcal{O}(L^2)$ gates

$$H = \sum_{k=1}^{L} \alpha_k U_k$$
 with $U_k^{\dagger} U_k = \mathbb{1}$ and $\alpha = \sum_{k=1}^{L} \alpha_k \ge \|H\|$

Quantum Phase Estimation with no time evolutionBerry et al. (2018)We can use W_Q instead of $\exp(itH)$ to get the energy spectrum

• can we use W_Q to compute scattering-cross sections?

Qubitization for scattering cross section

Algorithm 1

Roggero & Carlson (2018)

- prepare target state
- apply excitation operator
- measure energy using U(t)
- final time evolution
- measurement

Algorithm 2

Roggero, Li et al. (2019)

- prepare target state
- apply excitation operator
- measure energy using W_Q
- final time evolution
- measurement

Qubitization for scattering cross section

Algorithm 1

Roggero & Carlson (2018)

- prepare target state
- apply excitation operator
- measure energy using U(t)
- final time evolution
- measurement

Algorithm 2

Roggero, Li et al. (2019)

- prepare target state
- apply excitation operator
- measure energy using W_Q
- final time evolution
- measurement

• Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$H = \sum_{ij} K_{ij} a_i^{\dagger} a_j + \sum_{ijkl} U_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l + \sum_{ijklmn} V_{ijklmn} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l a_m a_n$$

• Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$H = \sum_{ij} K_{ij} a_i^{\dagger} a_j + \sum_{ijkl} U_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l + \sum_{ijklmn} V_{ijklmn} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l a_m a_n$$

 Quantum Phase Estimation uses this to compute eigenvalues exponentially faster than with (exact) classical methods

- we can use this to prepare eigenstates
- we can use this to compute cross sections
- . . .

• Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$H = \sum_{ij} K_{ij} a_i^{\dagger} a_j + \sum_{ijkl} U_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l + \sum_{ijklmn} V_{ijklmn} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l a_m a_n$$

 Quantum Phase Estimation uses this to compute eigenvalues exponentially faster than with (exact) classical methods

- we can use this to prepare eigenstates
- we can use this to compute cross sections
- ...
- Quantum Computers are even better at evolving using the qubiterate

$$W_Q \approx \exp\left(i \arccos\left(\frac{H}{\alpha}\right)\right)$$

- we can use this to do time evolution faster: $\mathcal{O}\left(\alpha t + \log(1/\epsilon)\right)$
- we can use this to compute cross sections faster

• . . .

• Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$H = \sum_{ij} K_{ij} a_i^{\dagger} a_j + \sum_{ijkl} U_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l + \sum_{ijklmn} V_{ijklmn} a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l a_m a_n$$

• Quantum Phase Estimation uses this to compute eigenvalues exponentially faster than with (exact) classical methods

- we can use this to prepare eigenstates
- we can use this to compute cross sections
- ...
- Quantum Computers are even better at evolving using the qubiterate

$$W_Q \approx \exp\left(i\arccos\left(\frac{H}{\alpha}\right)\right)$$

- we can use this to do time evolution faster: $\mathcal{O}\left(\alpha t + \log(1/\epsilon)\right)$
- we can use this to compute cross sections faster
- . . .

We will need to reduce gate counts considerably!

Alessandro Roggero