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The plan for today

@ nuclear dynamics, computation of scattering cross sections
o EXAMPLE: neutrino-*°Ar cross section for DUNE
o inclusive scattering and the response function
e calculation of two-point functions
o direct calculation of response in frequency space

o complexity of these calculations, can we actually run them on

current/near-term NISQ devices?
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Final recap of first day
@ quantum computers can simulate efficiently the time-evolution
operator U (1) = exp(iTH) for r-local Hamiltonians
o for target error € this requires O(poly(n,7,1/€)4™) gates
e Jordan Wigner on n qubits leads to n-local terms!
@ SPOILER: this might not be a problem in practice
o tomorrow we'll generalize this and find better scaling
@ if we can prepare an energy eigenstate |¢) we can use this to measure
it's phase with accuracy A using a total propagation time 7 ~ 1/A

© if |¥) has overlap a = [(¢|¥)|?, we just add O(1/a) repetitions
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Problem of non-locality of Jordan-Wigner mapping

The Jordan-Wigner mapping stores the information about the fermionic
parity into strings of Z operators between fermionic modes:

XPXq + YEDY‘I

a;aq = 5 (Zp+1 Ce Zq—l)

This leads to large CNOT circuits to compute the parity, for instance
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When executing the full propagator many phases cancel  [Hastings et al. (2014)]

Ui(r) = Hexp(iThpyqa;r,aq)
p.g
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Problem of non-locality of Jordan-Wigner mapping |l

When executing the full propagator many phases cancel  [Hastings et al. (2014)]

Ui(r) = H exp(iThnqa;;aq) = Hup,q(T)

p.q

P,
Fermionic Swap Network

Babbush et al. (2017), Kivlichan et al. (2018)

We can implement Uy (7) exactly using only 3(’2‘) two qubit gates
o n layers of 251 two qubit gates
Wiir1 = s i+1(7) fswap

100 O

f (oo 1 o0
SWAP—Oloo

e OO0 00 O 000 1
mal () @ ® O o final qubit order is reversed
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Time evolution: short time approximations

Baker—Campbell-Hausdorff formula

exp (it (A + B)) = exp (itA) exp (itB) + O ([A, B]tz)

@ can be extended to large time intervals by slicing [0, ¢] into L intervals

exp (it (A + B)) = [exp (izA) exp <i£B>]L +0 ([A, B]tz)

and we need: L = O (t*/e)
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Time evolution: short time approximations

Baker—Campbell-Hausdorff formula

exp (it (A + B)) = exp (itA) exp (itB) + O ([A, B]tz)

@ can be extended to large time intervals by slicing [0, ¢] into L intervals

exp (it (A + B)) = [exp (izA) exp <¢23>]L +0 ([A, B]i)

and we need: L = O (t*/e)
@ we can define higher order formulas with better scaling Suzuki (1991)

Sy(t) = exp (i;B) exp (itA) exp (iéB) =e=0 (%)

N
In general formulas with error O(t7) will require L = O (t% (1) 7—1) J

@ is it possible to get a better scaling? Say O (¢t + log(1/¢))?
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Efficient time evolution with qubitization

Assume the Hamiltonian can be decomposed efficiently as

L
H=>Y oyl with UiUy=1 and a>0
k=1
EFFICIENT: the number of terms L = poly(n), gate cost of Uy, is poly(n)

Time evolution using Quantum Signal Processing Low & Chuang (2016)
The time evolution operator U(t) can be approximated with error less than
e using O (t + log(1/e€)) calls to a quantum operation, the qubiterate
W, that can be implemented with O(poly(n)) gates
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Efficient time evolution with qubitization

Assume the Hamiltonian can be decomposed efficiently as

L
H=>Y oyl with UiUy=1 and a>0
k=1
EFFICIENT: the number of terms L = poly(n), gate cost of Uy, is poly(n)

Time evolution using Quantum Signal Processing Low & Chuang (2016)
The time evolution operator U(t) can be approximated with error less than
e using O (t + log(1/e€)) calls to a quantum operation, the qubiterate
W, that can be implemented with O(poly(n)) gates

@ is this the limit or can we hope for something better?

Atia & Aharonov (2017)

No Fast-Forward Theorem
Without additional details on the Hamiltonian, you can't beat O(t)
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Appetizer: the Linear Combination of Unitaries method

Assume the Hamiltonian can be decomposed efficiently as
L

H = ZakUk with U,;rU/rC =1 and o >0
k=1

and define o = S5, oy, > || H|.

Linear Combination of Unitaries (LCU) Childs & Wiebe (2012)

We can apply the operation H, = H/« to a state |U) with probability
P = (U|H?|V)/a? m = [logy(L)] ancilla qubits and O(poly(L, n)) gates
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Appetizer: the Linear Combination of Unitaries method

Assume the Hamiltonian can be decomposed efficiently as
L

H = ZakUk with U,IUk =1 and o >0
k=1

and define o = S5, oy, > || H|.

Linear Combination of Unitaries (LCU)

Childs & Wiebe (2012)
We can apply the operation H, = H/« to a state |U) with probability
P = (U|H?|V)/a? m = [logy(L)] ancilla qubits and O(poly(L, n)) gates

L-1
prepare  Vp|0), = Z Zetl |k)  select Vg = Z]k)(k]@UkH
k=0 @ k=0
the final state is
O Hvil- @) = 2wy o), + o)
Vs Qo
&)

where (04]0),, = 0.
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Appetizer: the Linear Combination of Unitaries method

L L
H=Y oyUp with UlUy=1 and o= a;>|[H]|
k=1 k=1

Linear Combination of Unitaries (LCU) Childs & Wiebe (2012)

We can apply the operation H, = H/« to a state |¥) with probability
P = (U|H?|V)/a?, m = [logy(L)] ancilla qubits and O(poly(L,n)) gates

Expand time-evolution operator as Taylor series
K

exp(itH) ~

E : Qgy -+ 0gqUqy - Uy,
k=0 k=0 q0-qx=1
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Appetizer: the Linear Combination of Unitaries method

L L
H=Y oyUp with UlUy=1 and o= a;>|[H]|
k=1 k=1

Linear Combination of Unitaries (LCU) Childs & Wiebe (2012)

We can apply the operation H, = H/« to a state |¥) with probability
P = (U|H?|V)/a?, m = [logy(L)] ancilla qubits and O(poly(L,n)) gates

Expand time-evolution operator as Taylor series

Time evolution with truncated Taylor series Berry et al. (2015)

We need O (at%) calls to Vg, Vp costing ~ O(L?) gates

@ use oblivious amplitude amplification to boost probability P = 1
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Amplitude Amplification

Brassard & Hoyer (1997), Grover (1998)

10),,

Vs

Vi

= @) = U (W) [0),, = £ W) |0),, + [0+)
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More generally we can consider the situation where

|®) = sin(0)|¥) + cos(9)|\IlL) ,

then we can use the reflections Ry = 1 — 2|U)(¥| and Ry = 2|P)(P|—-1
to rotate in the 2D subspace spanned by |¥) and |¥t).
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Amplitude Amplification
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Amplitude Amplification

Brassard & Hoyer (1997), Grover (1998)

i [Ve | Vs | LE = |9) =U|9)0),, = £ |¥)|0),, + |0F)

More generally we can consider the situation where
|®) = sin(0)|¥) + cos(9)|TF) ,

then we can use the reflections Ry = 1 — 2|U)(¥| and Ry = 2|P)(P|-1
to rotate in the 2D subspace spanned by |¥) and |¥+). We have

W™ |®) = sin ((2n 4 1)0)|¥) + cos ((2n + 1)0)|¥L) W = ReRy

and will need n & 7 /46 iterations to reach maximum success probability.
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Amplitude Amplification

Brassard & Hoyer (1997), Grover (1998)

i [Ve | Vs | LE = |9) =U|9)0),, = £ |¥)|0),, + |0F)

More generally we can consider the situation where
|®) = sin(6)|¥) + cos(A)|TL) |

then we can use the reflections Ry = 1 — 2|U)(¥| and Ry = 2|P)(P|-1
to rotate in the 2D subspace spanned by |¥) and |¥+). We have

W™ |®) = sin ((2n 4 1)0)|¥) + cos ((2n + 1)0)|¥L) W = ReRy

and will need n & 7 /46 iterations to reach maximum success probability.

Oblivious amplitude amplification Berry et. al (2014)

For unitary H we only need W = —URoUT Ry where Ry reflects over |0), .
JLAB - 18 Mar 2020  12/18




Quick recap on this last part

Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015)
L

L

H=>Y oyUp with UlUy=1 and o= a;>|[H]|

k=1

k=1

@ Linear Combination of Unitaries (LCU)

10

Vs

Vi

= je) =U D) (0),, = Z|T)[0),, + o)

V)

= the algorithm succeeds with probability P = (U|H?|¥) /a2
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Quick recap on this last part

Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015)
L

L

H=>Y oyUp with UlUy=1 and o= a;>|[H]|

k=1

k=1

@ Linear Combination of Unitaries (LCU)

10

Vs

Vi

= @) = U|w)|0),, = Z[T)[0),, + |0L)

V)

= the algorithm succeeds with probability P = (U|H?|¥) /a2
@ Amplitude Amplification can boost probability at cost O <1/\/1_3>

@ Time evolution with Taylor exp. can achieve scaling O (at log(at/€))

Standard Trotter-like approaches can only give O <t1+%/e%> with n > 1 J
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Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015)
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L

H=>Y oyUp with UlUy=1 and o= a;>|[H]|

k=1

k=1

@ Linear Combination of Unitaries (LCU)

10

Vs

Vi

= @) = U|w)|0),, = Z[T)[0),, + |0L)

V)

= the algorithm succeeds with probability P = (U|H?|¥) /a2
o Amplitude Amplification can boost probability at cost O <1/\/T3’>

@ Time evolution with Taylor exp. can achieve scaling O (at log(at/€))

Standard Trotter-like approaches can only give O (tH%/e%) with n > 1 J

@ use Oblivious Amplitude Amplification to achieve this deterministically
with much smaller prefactors (simpler reflection operators)
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Back to qubitization
Low & Chuang (2016)

0 % V-
|>m VP :>|(I)>

Vs =U[9)[0),,, = Z12)[0),, +[0*)
)

If we denote |¢p) = Vp |0),, the qubiterate W can be defined as
Wq = (2¢p)(op|-1) Vs

one can show that if H/a =) A,|n)(n| then we can write

WQ|n>|¢P>:WQ|Pn>:)‘n|Pn>+ 1_)‘121

+)

for every eigenstate = W generates rotations in span{|F,) , }Pni>} Vn

1_)‘2 1Y arccos(An
=@y VIR) @
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What is this useful for?

WQ _ @ (\/{\ji)\% 1 — )\2) @ 1Y arccos (An) if’ arccos(g)

n

@ we have a 2D invariant subspace for every eigenvalue = powers of the
qubiterate Wy will generate rotations in these subspaces

Quantum Signal Processing Low & Chuang (2016)

We can use this to generate ponnomiaI functions of the Hamiltonian. Take

Wo(0) =D (o Bz N ) = ROWR(0)

where R(6) uses Vp, then we can use this phased iterate to generate
N N/2 H J
IIWa(®) =3 [os(9) + 2 () (%)

o (QSP+Taylor) = optimal scaling algorithm for time evolution
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What else is this useful for?

U\/1=x2 An L

@ the spectrum of Wy, is the (almost) the same as the Hamiltonian

WQ = @ ( An _M) _ @ eiYn arccos(An) ei? arccos(g) J

VA, = E, /o we have ni = exp (i £ arccos(Ay,))

o the qubiterate W can be implemented exactly using O(L?) gates
L L
H=Y oyU; with UlUy=1 and o= a;>|[H]|
k=1 k=1
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What else is this useful for?

)\n —/1— A2 1Yy, arccos(An, iY arccos( 2
R R

@ the spectrum of Wy, is the (almost) the same as the Hamiltonian

VA, = E,/a we have 1y = exp (i £ arccos(A\y,))

o the qubiterate W can be implemented exactly using O(L?) gates
L L
H=Y oyU; with UlUy=1 and o= a;>|[H]|
k=1 k=1

Quantum Phase Estimation with no time evolution Berry et al. (2018)

We can use Wy, instead of exp (itH) to get the energy spectrum
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@ the spectrum of Wy, is the (almost) the same as the Hamiltonian

VA, = E,/a we have 1y = exp (i £ arccos(A\y,))

o the qubiterate W can be implemented exactly using O(L?) gates
L L
H=Y oyU; with UlUy=1 and o= a;>|[H]|
k=1 k=1

Quantum Phase Estimation with no time evolution Berry et al. (2018)

We can use Wy, instead of exp (itH) to get the energy spectrum

@ can we use Wy to compute scattering-cross sections?
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Qubitization for scattering cross section

A|gor|thm 1 Roggero & Carlson (2018) A|gor|thm 2 Roggero, Li et al. (2019)
@ prepare target state @ prepare target state
@ apply excitation operator @ apply excitation operator
@ measure energy using U (t) @ measure energy using Wo
e final time evolution o final time evolution
@ measurement @ measurement )
10° T T e T — 10°
JE Aw=10MeV A®=100 MeV g .
10°F , ‘ =10
— linear split o
4 — quadratic split A = 10"
2 — quadratic split B E
2 =107
e
o a7 E
- - 100
=" 4" 4™
2F T e -7 -t = )
0y =2 Ll == 10

1
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Qubitization for scattering cross section

A|gor|thm 1 Roggero & Carlson (2018) A|gor|thm 2 Roggero, Li et al. (2019)

@ prepare target state @ prepare target state
@ apply excitation operator @ apply excitation operator
@ measure energy using U (t) @ measure energy using Wo
e final time evolution o final time evolution
@ measurement ) @ measurement )

10° T T T — 10°

JE A0=10 MeV A®=100 MeV g .
10°F , ‘ 10
e — linear split F
10°F — quadratic split A = 10"

—— quadratic split B
qubitization

QPU hours
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What have we learned in these couple days

@ Quantum Computers are good at simulating time evolution for
Hamiltonians with 2 and 3-body interactions (and possibly others)

H = Z Kija;'aj + Z Uijklaja;akal + Z Vijklmna;ra}azalaman
ij ijkl ijklmn
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@ Quantum Computers are good at simulating time evolution for
Hamiltonians with 2 and 3-body interactions (and possibly others)

H = Z Kija;'aj + Z UijklaZa;akal + Z V,-jklmna;ra}azalaman
ij ijkl ijklmn
@ Quantum Phase Estimation uses this to compute eigenvalues
exponentially faster than with (exact) classical methods
e we can use this to prepare eigenstates
e we can use this to compute cross sections
o ...
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What have we learned in these couple days

@ Quantum Computers are good at simulating time evolution for
Hamiltonians with 2 and 3-body interactions (and possibly others)

H = Z Kijajaj + Z UijklaZa;akal + Z V,-jklmna;-ra}azalaman
ij ijkl ijklmn
@ Quantum Phase Estimation uses this to compute eigenvalues
exponentially faster than with (exact) classical methods
e we can use this to prepare eigenstates
e we can use this to compute cross sections

@ Quantum Computers are even better at evolving using the qubiterate

H
Wgq ~ exp (z arccos <a>)

e we can use this to do time evolution faster: O (at + log(1/¢))
e we can use this to compute cross sections faster
o ...
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What have we learned in these couple days

@ Quantum Computers are good at simulating time evolution for
Hamiltonians with 2 and 3-body interactions (and possibly others)

H = Z Kijajaj + Z UijklaZa;akal + Z V,-jklmna;-ra}azalaman
ij ijkl ijklmn
@ Quantum Phase Estimation uses this to compute eigenvalues
exponentially faster than with (exact) classical methods
e we can use this to prepare eigenstates
e we can use this to compute cross sections

@ Quantum Computers are even better at evolving using the qubiterate

H
Wgq ~ exp (z arccos <a>)

e we can use this to do time evolution faster: O (at + log(1/¢))
e we can use this to compute cross sections faster
o ...

We will need to reduce gate counts considerably! J
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