Nuclear structure (and reactions) with Quantum Computers - IV

Alessandro Roggero

figure credit: μ BooNE collab.

figure credit: IBM

QC and QIS for NP
JLAB - 18 March, 2020

The plan for today

- nuclear dynamics, computation of scattering cross sections
- EXAMPLE: neutrino- ${ }^{40} \mathrm{Ar}$ cross section for DUNE
- inclusive scattering and the response function
- calculation of two-point functions
- direct calculation of response in frequency space
- complexity of these calculations, can we actually run them on current/near-term NISQ devices?
from Google AI

- advanced algorithms
- Fermionic Swap Networks
- Linear Combination of Unitaries
- Amplitude Amplification
- Qubitization

The plan for today

- nuclear dynamics, computation of scattering cross sections
- EXAMPLE: neutrino- ${ }^{40} \mathrm{Ar}$ cross section for DUNE
- inclusive scattering and the response function
- calculation of two-point functions
- direct calculation of respone in frequency space
- complexity of these calculations, can we actually run them on current/near-term NISQ devices?
from Google AI

- advanced algorithms
- Fermionic Swap Networks
- Linear Combination of Unitaries
- Amplitude Amplification
- Qubitization

Final recap of first day

(1) quantum computers can simulate efficiently the time-evolution operator $U(\tau)=\exp (i \tau H)$ for r-local Hamiltonians

- for target error ϵ this requires $\mathcal{O}\left(\right.$ poly $\left.(n, \tau, 1 / \epsilon) 4^{r}\right)$ gates
- Jordan Wigner on n qubits leads to n-local terms!
- SPOILER: this might not be a problem in practice
- tomorrow we'll generalize this and find better scaling
(2) if we can prepare an energy eigenstate $|\phi\rangle$ we can use this to measure it's phase with accuracy Δ using a total propagation time $\tau \sim 1 / \Delta$
(3) if $|\Psi\rangle$ has overlap $\alpha=|\langle\phi \mid \Psi\rangle|^{2}$, we just add $\mathcal{O}(1 / \alpha)$ repetitions

Problem of non-locality of Jordan-Wigner mapping

The Jordan-Wigner mapping stores the information about the fermionic parity into strings of Z operators between fermionic modes:

$$
a_{p}^{\dagger} a_{q}=\frac{X_{p} X_{q}+Y_{p} Y_{q}}{2}\left(Z_{p+1} \cdots Z_{q-1}\right)
$$

This leads to large CNOT circuits to compute the parity, for instance

When executing the full propagator many phases cancel [Hastings et al. (2014)]

$$
U_{1}(\tau)=\prod_{p, q} \exp \left(i \tau h_{p, q} a_{p}^{\dagger} a_{q}\right)
$$

Problem of non-locality of Jordan-Wigner mapping II

When executing the full propagator many phases cancel [Hastings et al. (2014)]

$$
U_{1}(\tau)=\prod_{p, q}^{n} \exp \left(i \tau h_{p, q} a_{p}^{\dagger} a_{q}\right)=\prod_{p, q}^{n} u_{p, q}(\tau)
$$

Fermionic Swap Network

Babbush et al. (2017), Kivlichan et al. (2018)
We can implement $U_{1}(\tau)$ exactly using only $3\binom{n}{2}$ two qubit gates

- n layers of $\frac{n-1}{2}$ two qubit gates

$$
\begin{aligned}
W_{i, i+1} & =u_{i, i+1}(\tau) f_{S W A P} \\
f_{S W A P} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

- final qubit order is reversed

Final recap of first day

(1) quantum computers can simulate efficiently the time-evolution operator $U(\tau)=\exp (i \tau H)$ for r-local Hamiltonians

- for target error ϵ this requires $\mathcal{O}\left(\right.$ poly $\left.(n, \tau, 1 / \epsilon) 4^{r}\right)$ gates
- Jordan Wigner on n qubits leads to n-local terms!
- SPOILER: this might not be a problem in practice
- tomorrow we'll generalize this and find better scaling
(2) if we can prepare an energy eigenstate $|\phi\rangle$ we can use this to measure it's phase with accuracy Δ using a total propagation time $\tau \sim 1 / \Delta$
(3) if $|\Psi\rangle$ has overlap $\alpha=|\langle\phi \mid \Psi\rangle|^{2}$, we just add $\mathcal{O}(1 / \alpha)$ repetitions

Time evolution: short time approximations

Baker-Campbell-Hausdorff formula

$$
\exp (i t(A+B))=\exp (i t A) \exp (i t B)+\mathcal{O}\left([A, B] t^{2}\right)
$$

- can be extended to large time intervals by slicing $[0, t]$ into L intervals

$$
\exp (i t(A+B))=\left[\exp \left(i \frac{t}{L} A\right) \exp \left(i \frac{t}{L} B\right)\right]^{L}+\mathcal{O}\left([A, B]^{t^{2}}\right)
$$

and we need: $L=\mathcal{O}\left(t^{2} / \epsilon\right)$

Baker-Campbell-Hausdorff formula

$$
\exp (i t(A+B))=\exp (i t A) \exp (i t B)+\mathcal{O}\left([A, B] t^{2}\right)
$$

- can be extended to large time intervals by slicing $[0, t]$ into L intervals

$$
\exp (i t(A+B))=\left[\exp \left(i \frac{t}{L} A\right) \exp \left(i \frac{t}{L} B\right)\right]^{L}+\mathcal{O}\left([A, B] \frac{t^{2}}{L}\right)
$$

and we need: $L=\mathcal{O}\left(t^{2} / \epsilon\right)$

- we can define higher order formulas with better scaling Suzuki (1991)

$$
S_{2}(t)=\exp \left(i \frac{t}{2} B\right) \exp (i t A) \exp \left(i \frac{t}{2} B\right) \Rightarrow \epsilon=\mathcal{O}\left(t^{3}\right)
$$

In general formulas with error $\mathcal{O}\left(t^{\gamma}\right)$ will require $L=\mathcal{O}\left(t^{\frac{\gamma}{\gamma-1}}\left(\frac{1}{\epsilon}\right)^{\frac{1}{\gamma-1}}\right)$

- is it possible to get a better scaling? Say $\mathcal{O}(t+\log (1 / \epsilon))$?

Efficient time evolution with qubitization

Assume the Hamiltonian can be decomposed efficiently as

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha_{k}>0
$$

EFFICIENT: the number of terms $L=\operatorname{poly}(n)$, gate cost of U_{k} is poly (n)

Time evolution using Quantum Signal Processing

Low \& Chuang (2016)
The time evolution operator $U(t)$ can be approximated with error less than ϵ using $\mathcal{O}(t+\log (1 / \epsilon))$ calls to a quantum operation, the qubiterate W_{Q}, that can be implemented with $\mathcal{O}($ poly $(n))$ gates

Efficient time evolution with qubitization

Assume the Hamiltonian can be decomposed efficiently as

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha_{k}>0
$$

EFFICIENT: the number of terms $L=\operatorname{poly}(n)$, gate cost of U_{k} is poly (n)

Time evolution using Quantum Signal Processing

Low \& Chuang (2016)
The time evolution operator $U(t)$ can be approximated with error less than ϵ using $\mathcal{O}(t+\log (1 / \epsilon))$ calls to a quantum operation, the qubiterate W_{Q}, that can be implemented with $\mathcal{O}($ poly $(n))$ gates

- is this the limit or can we hope for something better?

Without additional details on the Hamiltonian, you can't beat $\mathcal{O}(t)$

Appetizer: the Linear Combination of Unitaries method

 Assume the Hamiltonian can be decomposed efficiently as$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha_{k}>0
$$

and define $\alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|$.

Linear Combination of Unitaries (LCU)

We can apply the operation $H_{\alpha}=H / \alpha$ to a state $|\Psi\rangle$ with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}, m=\left\lceil\log _{2}(L)\right\rceil$ ancilla qubits and $\mathcal{O}(\operatorname{poly}(L, n))$ gates

Appetizer: the Linear Combination of Unitaries method

 Assume the Hamiltonian can be decomposed efficiently as$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha_{k}>0
$$

and define $\alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|$.

Linear Combination of Unitaries (LCU)

We can apply the operation $H_{\alpha}=H / \alpha$ to a state $|\Psi\rangle$ with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}, m=\left\lceil\log _{2}(L)\right\rceil$ ancilla qubits and $\mathcal{O}(\operatorname{poly}(L, n))$ gates
prepare $\quad V_{P}|0\rangle_{m}=\sum_{k=0}^{L-1} \sqrt{\frac{\alpha_{k+1}}{\alpha}}|k\rangle \quad$ select $\quad V_{S}=\sum_{k=0}^{L-1}|k\rangle\langle k| \otimes U_{k+1}$ the final state is

$$
|\Phi\rangle=\frac{H}{\alpha}|\Psi\rangle \otimes|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

where $\left\langle 0^{\perp} \mid 0\right\rangle_{m}=0$.

Appetizer: the Linear Combination of Unitaries method

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

Linear Combination of Unitaries (LCU)

Childs \& Wiebe (2012)
We can apply the operation $H_{\alpha}=H / \alpha$ to a state $|\Psi\rangle$ with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}, m=\left\lceil\log _{2}(L)\right\rceil$ ancilla qubits and $\mathcal{O}(\operatorname{poly}(L, n))$ gates

Expand time-evolution operator as Taylor series

$$
\exp (i t H) \approx \sum_{k=0}^{K} \frac{(i t)^{k}}{k!} H^{k}=\sum_{k=0}^{K} \frac{(i t)^{k}}{k!} \sum_{q_{0} \cdots q_{k}=1}^{L} \alpha_{q_{0}} \cdots \alpha_{q_{k}} U_{q_{0}} \cdots U_{q_{k}}
$$

Appetizer: the Linear Combination of Unitaries method

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

Linear Combination of Unitaries (LCU)

Childs \& Wiebe (2012)
We can apply the operation $H_{\alpha}=H / \alpha$ to a state $|\Psi\rangle$ with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}, m=\left\lceil\log _{2}(L)\right\rceil$ ancilla qubits and $\mathcal{O}(\operatorname{poly}(L, n))$ gates

Expand time-evolution operator as Taylor series

$$
\exp (i t H) \approx \sum_{k=0}^{K} \frac{(i t)^{k}}{k!} H^{k}=\sum_{k=0}^{K} \frac{(i t)^{k}}{k!} \sum_{q_{0} \cdots q_{k}=1}^{L} \alpha_{q_{0}} \cdots \alpha_{q_{k}} U_{q_{0}} \cdots U_{q_{k}}
$$

Time evolution with truncated Taylor series

We need $\mathcal{O}\left(\alpha t \frac{\log (\alpha t / \epsilon)}{\log (\log (\alpha t / \epsilon))}\right)$ calls to V_{S}, V_{P} costing $\approx \mathcal{O}\left(L^{2}\right)$ gates

- use oblivious amplitude amplification to boost probability $P \approx 1$

Amplitude Amplification

Brassard \& Hoyer (1997), Grover (1998)

$$
|\Psi\rangle_{m}-V_{P}-V_{S}-V_{P}^{\dagger}-|\Phi\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

More generally we can consider the situation where

$$
|\Phi\rangle=\sin (\theta)|\Psi\rangle+\cos (\theta)\left|\Psi^{\perp}\right\rangle,
$$

then we can use the reflections $R_{\Psi}=\mathbb{1}-2|\Psi\rangle\langle\Psi|$ and $R_{\Phi}=2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $\left|\Psi^{\perp}\right\rangle$.

Amplitude Amplification

Brassard \& Hoyer (1997), Grover (1998)

More generally we can consider the situation where

$$
|\Phi\rangle=\sin (\theta)|\Psi\rangle+\cos (\theta)\left|\Psi^{\perp}\right\rangle
$$

then we can use the reflections $R_{\Psi}=\mathbb{1}-2|\Psi\rangle\langle\Psi|$ and $R_{\Phi}=2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $\left|\Psi^{\perp}\right\rangle$.

Amplitude Amplification

Brassard \& Hoyer (1997), Grover (1998)

More generally we can consider the situation where

$$
|\Phi\rangle=\sin (\theta)|\Psi\rangle+\cos (\theta)\left|\Psi^{\perp}\right\rangle,
$$

then we can use the reflections $R_{\Psi}=\mathbb{1}-2|\Psi\rangle\langle\Psi|$ and $R_{\Phi}=2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $\left|\Psi^{\perp}\right\rangle$.

Amplitude Amplification

Brassard \& Hoyer (1997), Grover (1998)

$$
|0\rangle_{m}-\sqrt{V_{P}}-V_{S}-V_{P}^{\dagger}-\Rightarrow|\Phi\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

More generally we can consider the situation where

$$
|\Phi\rangle=\sin (\theta)|\Psi\rangle+\cos (\theta)\left|\Psi^{\perp}\right\rangle
$$

then we can use the reflections $R_{\Psi}=\mathbb{1}-2|\Psi\rangle\langle\Psi|$ and $R_{\Phi}=2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $\left|\Psi^{\perp}\right\rangle$.

Amplitude Amplification

$$
\left.\left|\begin{array}{l}
|0\rangle_{m}-V_{P}-V_{S}-V_{P}^{\dagger}-
\end{array} \Rightarrow\right| \Phi\right\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

More generally we can consider the situation where

$$
|\Phi\rangle=\sin (\theta)|\Psi\rangle+\cos (\theta)\left|\Psi^{\perp}\right\rangle
$$

then we can use the reflections $R_{\Psi}=\mathbb{1}-2|\Psi\rangle\langle\Psi|$ and $R_{\Phi}=2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $\left|\Psi^{\perp}\right\rangle$. We have

$$
W^{n}|\Phi\rangle=\sin ((2 n+1) \theta)|\Psi\rangle+\cos ((2 n+1) \theta)\left|\Psi^{\perp}\right\rangle \quad W=R_{\Phi} R_{\Psi}
$$

and will need $n \approx \pi / 4 \theta$ iterations to reach maximum success probability.

Amplitude Amplification

$$
\begin{aligned}
& |0\rangle_{m}-V_{P}-V_{S}-V_{P}^{\dagger}- \\
& |\Psi\rangle
\end{aligned} \Rightarrow|\Phi\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

More generally we can consider the situation where

$$
|\Phi\rangle=\sin (\theta)|\Psi\rangle+\cos (\theta)\left|\Psi^{\perp}\right\rangle,
$$

then we can use the reflections $R_{\Psi}=\mathbb{1}-2|\Psi\rangle\langle\Psi|$ and $R_{\Phi}=2|\Phi\rangle\langle\Phi|-\mathbb{1}$ to rotate in the 2D subspace spanned by $|\Psi\rangle$ and $\left|\Psi^{\perp}\right\rangle$. We have

$$
W^{n}|\Phi\rangle=\sin ((2 n+1) \theta)|\Psi\rangle+\cos ((2 n+1) \theta)\left|\Psi^{\perp}\right\rangle \quad W=R_{\Phi} R_{\Psi}
$$

and will need $n \approx \pi / 4 \theta$ iterations to reach maximum success probability.

Oblivious amplitude amplification

For unitary H we only need $W=-U R_{0} U^{\dagger} R_{0}$ where R_{0} reflects over $|0\rangle_{m}$

Quick recap on this last part

Brassard \& Hoyer (1997), Grover (1998), Childs \& Wiebe (2012), Berry et. al (2014-2015)

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

- Linear Combination of Unitaries (LCU)

$$
|\Psi\rangle_{m}-V_{P}-V_{S}-V_{P}^{\dagger} \Rightarrow|\Phi\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

\Rightarrow the algorithm succeeds with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}$.

Quick recap on this last part

Brassard \& Hoyer (1997), Grover (1998), Childs \& Wiebe (2012), Berry et. al (2014-2015)

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

- Linear Combination of Unitaries (LCU)

$$
|\Psi\rangle=V_{m}-V_{S}-V_{P}^{\dagger} \Rightarrow|\Phi\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

\Rightarrow the algorithm succeeds with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}$.

- Amplitude Amplification can boost probability at $\operatorname{cost} \mathcal{O}(1 / \sqrt{P})$

Quick recap on this last part

Brassard \& Hoyer (1997), Grover (1998), Childs \& Wiebe (2012), Berry et. al (2014-2015)

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

- Linear Combination of Unitaries (LCU)

$$
\left.|0\rangle_{m}-V_{P}\left|V_{S}-V_{P}^{\dagger}-\right| \Phi\right\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

\Rightarrow the algorithm succeeds with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}$.

- Amplitude Amplification can boost probability at $\operatorname{cost} \mathcal{O}(1 / \sqrt{P})$
- Time evolution with Taylor exp. can achieve scaling $\mathcal{O}(\alpha t \log (\alpha t / \epsilon))$

Standard Trotter-like approaches can only give $\mathcal{O}\left(t^{1+\frac{1}{\eta}} / \epsilon^{\frac{1}{\eta}}\right)$ with $\eta \geq 1$

Quick recap on this last part

Brassard \& Hoyer (1997), Grover (1998), Childs \& Wiebe (2012), Berry et. al (2014-2015)

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

- Linear Combination of Unitaries (LCU)

$$
|0\rangle_{m}-V_{P}-V_{S}-V_{P}^{\dagger} \Rightarrow|\Phi\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

\Rightarrow the algorithm succeeds with probability $P=\langle\Psi| H^{2}|\Psi\rangle / \alpha^{2}$.

- Amplitude Amplification can boost probability at $\operatorname{cost} \mathcal{O}(1 / \sqrt{P})$
- Time evolution with Taylor exp. can achieve scaling $\mathcal{O}(\alpha t \log (\alpha t / \epsilon))$

Standard Trotter-like approaches can only give $\mathcal{O}\left(t^{1+\frac{1}{\eta}} / \epsilon^{\frac{1}{\eta}}\right)$ with $\eta \geq 1$

- use Oblivious Amplitude Amplification to achieve this deterministically with much smaller prefactors (simpler reflection operators)

Back to qubitization

Low \& Chuang (2016)

$$
|0\rangle_{m}-V_{P}-V_{S}-V_{P}^{\dagger}-|\Phi\rangle=U|\Psi\rangle|0\rangle_{m}=\frac{H}{\alpha}|\Psi\rangle|0\rangle_{m}+\left|0^{\perp}\right\rangle
$$

If we denote $\left|\phi_{P}\right\rangle=V_{P}|0\rangle_{m}$ the qubiterate W_{Q} can be defined as

$$
W_{Q}=\left(2\left|\phi_{P}\right\rangle\left\langle\phi_{P}\right|-\mathbb{1}\right) V_{S}
$$

one can show that if $H / \alpha=\sum_{n} \lambda_{n}|n\rangle\langle n|$ then we can write

$$
W_{Q}|n\rangle\left|\phi_{P}\right\rangle=W_{Q}\left|P_{n}\right\rangle=\lambda_{n}\left|P_{n}\right\rangle+\sqrt{1-\lambda_{n}^{2}}\left|P_{n}^{\perp}\right\rangle
$$

for every eigenstate $\Rightarrow W_{Q}$ generates rotations in $\operatorname{span}\left\{\left|P_{n}\right\rangle,\left|P_{n}^{\perp}\right\rangle\right\} \forall n$

$$
W_{Q}=\bigoplus_{n}\left(\begin{array}{cc}
\lambda_{n} & -\sqrt{1-\lambda_{n}^{2}} \\
\sqrt{1-\lambda_{n}^{2}} & \lambda_{n}
\end{array}\right)=\bigoplus_{n} e^{i Y \arccos \left(\lambda_{n}\right)}
$$

What is this useful for?

$$
W_{Q}=\bigoplus_{n}\left(\begin{array}{cc}
\lambda_{n} & -\sqrt{1-\lambda_{n}^{2}} \\
\sqrt{1-\lambda_{n}^{2}} & \lambda_{n}
\end{array}\right)=\bigoplus_{n} e^{i Y \arccos \left(\lambda_{n}\right)} \sim e^{i \widetilde{Y} \arccos \left(\frac{H}{\alpha}\right)}
$$

- we have a 2 D invariant subspace for every eigenvalue \Rightarrow powers of the qubiterate W_{Q} will generate rotations in these subspaces

Quantum Signal Processing

We can use this to generate polynomial functions of the Hamiltonian. Take

$$
W_{Q}(\theta)=\bigoplus_{n}\left(\begin{array}{cc}
\lambda_{n} & -i e^{-i \theta} \sqrt{1-\lambda_{n}^{2}} \\
i e^{i \theta} \sqrt{1-\lambda_{n}^{2}} & \lambda_{n}
\end{array}\right)=R(\theta) W_{Q} R^{\dagger}(\theta)
$$

where $R(\theta)$ uses V_{P}, then we can use this phased iterate to generate

$$
\prod_{j=1}^{N} W_{Q}\left(\theta_{j}\right)=\sum_{j=1}^{N / 2}\left[a_{j}(\vec{\theta})+i b_{j}(\vec{\theta})\right]\left(\frac{H}{\alpha}\right)^{j}
$$

- (QSP+Taylor) \Rightarrow optimal scaling algorithm for time evolution

What else is this useful for?

$$
W_{Q}=\bigoplus_{n}\left(\begin{array}{cc}
\lambda_{n} & -\sqrt{1-\lambda_{n}^{2}} \\
\sqrt{1-\lambda_{n}^{2}} & \lambda_{n}
\end{array}\right)=\bigoplus_{n} e^{i Y_{n} \arccos \left(\lambda_{n}\right)} \sim e^{i \widetilde{Y} \arccos \left(\frac{H}{\alpha}\right)}
$$

- the spectrum of W_{Q} is the (almost) the same as the Hamiltonian

$$
\forall \lambda_{n}=E_{n} / \alpha \quad \text { we have } \quad \eta_{ \pm}=\exp \left(i \pm \arccos \left(\lambda_{n}\right)\right)
$$

- the qubiterate W_{Q} can be implemented exactly using $\mathcal{O}\left(L^{2}\right)$ gates

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

What else is this useful for?

$$
W_{Q}=\bigoplus_{n}\left(\begin{array}{cc}
\lambda_{n} & -\sqrt{1-\lambda_{n}^{2}} \\
\sqrt{1-\lambda_{n}^{2}} & \lambda_{n}
\end{array}\right)=\bigoplus_{n} e^{i Y_{n} \arccos \left(\lambda_{n}\right)} \sim e^{i \widetilde{Y} \arccos \left(\frac{H}{\alpha}\right)}
$$

- the spectrum of W_{Q} is the (almost) the same as the Hamiltonian

$$
\forall \lambda_{n}=E_{n} / \alpha \quad \text { we have } \quad \eta_{ \pm}=\exp \left(i \pm \arccos \left(\lambda_{n}\right)\right)
$$

- the qubiterate W_{Q} can be implemented exactly using $\mathcal{O}\left(L^{2}\right)$ gates

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

Quantum Phase Estimation with no time evolution

We can use W_{Q} instead of $\exp (i t H)$ to get the energy spectrum

What else is this useful for?

$$
W_{Q}=\bigoplus_{n}\left(\begin{array}{cc}
\lambda_{n} & -\sqrt{1-\lambda_{n}^{2}} \\
\sqrt{1-\lambda_{n}^{2}} & \lambda_{n}
\end{array}\right)=\bigoplus_{n} e^{i Y_{n} \arccos \left(\lambda_{n}\right)} \sim e^{i \widetilde{Y} \arccos \left(\frac{H}{\alpha}\right)}
$$

- the spectrum of W_{Q} is the (almost) the same as the Hamiltonian

$$
\forall \lambda_{n}=E_{n} / \alpha \quad \text { we have } \quad \eta_{ \pm}=\exp \left(i \pm \arccos \left(\lambda_{n}\right)\right)
$$

- the qubiterate W_{Q} can be implemented exactly using $\mathcal{O}\left(L^{2}\right)$ gates

$$
H=\sum_{k=1}^{L} \alpha_{k} U_{k} \quad \text { with } \quad U_{k}^{\dagger} U_{k}=\mathbb{1} \quad \text { and } \quad \alpha=\sum_{k=1}^{L} \alpha_{k} \geq\|H\|
$$

Quantum Phase Estimation with no time evolution

We can use W_{Q} instead of $\exp (i t H)$ to get the energy spectrum

- can we use W_{Q} to compute scattering-cross sections?

Qubitization for scattering cross section

Algorithm 1

Roggero \& Carlson (2018)

- prepare target state
- apply excitation operator
- measure energy using $U(t)$
- final time evolution
- measurement

Algorithm 2

- prepare target state
- apply excitation operator
- measure energy using W_{Q}
- final time evolution
- measurement

Qubitization for scattering cross section

Algorithm 1

Roggero \& Carlson (2018)

- prepare target state
- apply excitation operator
- measure energy using $U(t)$
- final time evolution
- measurement

Algorithm 2

- prepare target state
- apply excitation operator
- measure energy using W_{Q}
- final time evolution
- measurement

What have we learned in these couple days

- Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$
H=\sum_{i j} K_{i j} a_{i}^{\dagger} a_{j}+\sum_{i j k l} U_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}+\sum_{i j k l m n} V_{i j k l m n} a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m} a_{n}
$$

What have we learned in these couple days

- Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$
H=\sum_{i j} K_{i j} a_{i}^{\dagger} a_{j}+\sum_{i j k l} U_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}+\sum_{i j k l m n} V_{i j k l m n} a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m} a_{n}
$$

- Quantum Phase Estimation uses this to compute eigenvalues exponentially faster than with (exact) classical methods
- we can use this to prepare eigenstates
- we can use this to compute cross sections

What have we learned in these couple days

- Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$
H=\sum_{i j} K_{i j} a_{i}^{\dagger} a_{j}+\sum_{i j k l} U_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}+\sum_{i j k l m n} V_{i j k l m n} a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m} a_{n}
$$

- Quantum Phase Estimation uses this to compute eigenvalues exponentially faster than with (exact) classical methods
- we can use this to prepare eigenstates
- we can use this to compute cross sections
- ...
- Quantum Computers are even better at evolving using the qubiterate

$$
W_{Q} \approx \exp \left(i \arccos \left(\frac{H}{\alpha}\right)\right)
$$

- we can use this to do time evolution faster: $\mathcal{O}(\alpha t+\log (1 / \epsilon))$
- we can use this to compute cross sections faster
- ...

What have we learned in these couple days

- Quantum Computers are good at simulating time evolution for Hamiltonians with 2 and 3-body interactions (and possibly others)

$$
H=\sum_{i j} K_{i j} a_{i}^{\dagger} a_{j}+\sum_{i j k l} U_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}+\sum_{i j k l m n} V_{i j k l m n} a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m} a_{n}
$$

- Quantum Phase Estimation uses this to compute eigenvalues exponentially faster than with (exact) classical methods
- we can use this to prepare eigenstates
- we can use this to compute cross sections
- ...
- Quantum Computers are even better at evolving using the qubiterate

$$
W_{Q} \approx \exp \left(i \arccos \left(\frac{H}{\alpha}\right)\right)
$$

- we can use this to do time evolution faster: $\mathcal{O}(\alpha t+\log (1 / \epsilon))$
- we can use this to compute cross sections faster
- ...

We will need to reduce gate counts considerably!

