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The plan for today
nuclear dynamics, computation of scattering cross sections

EXAMPLE: neutrino-40Ar cross section for DUNE
inclusive scattering and the response function
calculation of two-point functions
direct calculation of response in frequency space

complexity of these calculations, can we actually run them on
current/near-term NISQ devices?

advanced algorithms

Fermionic Swap Networks
Linear Combination of Unitaries

Amplitude Amplification
Qubitization
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Final recap of first day
1 quantum computers can simulate efficiently the time-evolution

operator U(τ) = exp(iτH) for r-local Hamiltonians
for target error ε this requires O(poly(n, τ, 1/ε)4r) gates
Jordan Wigner on n qubits leads to n-local terms!

SPOILER: this might not be a problem in practice
tomorrow we’ll generalize this and find better scaling

2 if we can prepare an energy eigenstate |φ〉 we can use this to measure
it’s phase with accuracy ∆ using a total propagation time τ ∼ 1/∆

3 if |Ψ〉 has overlap α = |〈φ|Ψ〉|2, we just add O(1/α) repetitions
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Problem of non-locality of Jordan-Wigner mapping
The Jordan-Wigner mapping stores the information about the fermionic
parity into strings of Z operators between fermionic modes:

a†paq =
XpXq + YpYq

2
(Zp+1 · · ·Zq−1)

This leads to large CNOT circuits to compute the parity, for instance

H • • H

• •
• • = exp

(
i θ2X1X5Z2Z3Z4

)
• •

H Rz(θ) H

When executing the full propagator many phases cancel [Hastings et al. (2014)]

U1(τ) =
∏
p,q

exp(iτhp,qa
†
paq)
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Problem of non-locality of Jordan-Wigner mapping II
When executing the full propagator many phases cancel [Hastings et al. (2014)]

U1(τ) =

n∏
p,q

exp(iτhp,qa
†
paq) =

n∏
p,q

up,q(τ)

Fermionic Swap Network
Babbush et al. (2017), Kivlichan et al. (2018)

We can implement U1(τ) exactly using only 3
(
n
2

)
two qubit gates

n layers of n−1
2 two qubit gates

Wi,i+1 = ui,i+1(τ)fSWAP

fSWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


final qubit order is reversed
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Time evolution: short time approximations
Baker–Campbell–Hausdorff formula

exp (it (A+B)) = exp (itA) exp (itB) +O
(
[A,B]t2

)
can be extended to large time intervals by slicing [0, t] into L intervals

exp (it (A+B)) =

[
exp

(
i
t

L
A

)
exp

(
i
t

L
B

)]L
+O

(
[A,B]

t2

L

)
and we need: L = O

(
t2/ε

)

we can define higher order formulas with better scaling Suzuki (1991)

S2(t) = exp

(
i
t

2
B

)
exp (itA) exp

(
i
t

2
B

)
⇒ ε = O

(
t3
)

In general formulas with error O(tγ) will require L = O
(
t

γ
γ−1
(

1
ε

) 1
γ−1

)
is it possible to get a better scaling? Say O (t+ log(1/ε))?
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Efficient time evolution with qubitization

Assume the Hamiltonian can be decomposed efficiently as

H =

L∑
k=1

αkUk with U †kUk = 1 and αk > 0

EFFICIENT: the number of terms L = poly(n), gate cost of Uk is poly(n)

Time evolution using Quantum Signal Processing Low & Chuang (2016)

The time evolution operator U(t) can be approximated with error less than
ε using O (t+ log(1/ε)) calls to a quantum operation, the qubiterate
WQ, that can be implemented with O(poly(n)) gates

is this the limit or can we hope for something better?

No Fast-Forward Theorem Atia & Aharonov (2017)

Without additional details on the Hamiltonian, you can’t beat O(t)
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Appetizer: the Linear Combination of Unitaries method
Assume the Hamiltonian can be decomposed efficiently as

H =

L∑
k=1

αkUk with U †kUk = 1 and αk > 0

and define α =
∑L

k=1 αk ≥ ‖H‖.

Linear Combination of Unitaries (LCU) Childs & Wiebe (2012)

We can apply the operation Hα = H/α to a state |Ψ〉 with probability
P = 〈Ψ|H2|Ψ〉/α2, m = dlog2(L)e ancilla qubits and O(poly(L, n)) gates

prepare VP |0〉m =
L−1∑
k=0

√
αk+1

α
|k〉 select VS =

L−1∑
k=0

|k〉〈k|⊗Uk+1

|0〉m VP
VS

V †P

|Ψ〉

the final state is

|Φ〉 =
H

α
|Ψ〉 ⊗ |0〉m +

∣∣∣0⊥〉
where 〈0⊥|0〉m = 0.
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Appetizer: the Linear Combination of Unitaries method

H =

L∑
k=1

αkUk with U †kUk = 1 and α =

L∑
k=1

αk ≥ ‖H‖

Linear Combination of Unitaries (LCU) Childs & Wiebe (2012)

We can apply the operation Hα = H/α to a state |Ψ〉 with probability
P = 〈Ψ|H2|Ψ〉/α2, m = dlog2(L)e ancilla qubits and O(poly(L, n)) gates

Expand time-evolution operator as Taylor series

exp(itH) ≈
K∑
k=0

(it)k

k!
Hk =

K∑
k=0

(it)k

k!

L∑
q0···qk=1

αq0 · · ·αqkUq0 · · ·Uqk

Time evolution with truncated Taylor series Berry et al. (2015)

We need O
(
αt log(αt/ε)

log(log(αt/ε))

)
calls to VS , VP costing ≈ O(L2) gates

use oblivious amplitude amplification to boost probability P ≈ 1
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Amplitude Amplification
Brassard & Hoyer (1997), Grover (1998)

|0〉m VP
VS

V †P ⇒ |Φ〉 = U |Ψ〉 |0〉m = H
α |Ψ〉 |0〉m +

∣∣0⊥〉
|Ψ〉

More generally we can consider the situation where

|Φ〉 = sin(θ)|Ψ〉+ cos(θ)|Ψ⊥〉 ,
then we can use the reflections RΨ = 1− 2|Ψ〉〈Ψ| and RΦ = 2|Φ〉〈Φ|−1
to rotate in the 2D subspace spanned by |Ψ〉 and |Ψ⊥〉.
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Amplitude Amplification
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V †P ⇒ |Φ〉 = U |Ψ〉 |0〉m = H
α |Ψ〉 |0〉m +

∣∣0⊥〉
|Ψ〉

More generally we can consider the situation where

|Φ〉 = sin(θ)|Ψ〉+ cos(θ)|Ψ⊥〉 ,

then we can use the reflections RΨ = 1− 2|Ψ〉〈Ψ| and RΦ = 2|Φ〉〈Φ|−1
to rotate in the 2D subspace spanned by |Ψ〉 and |Ψ⊥〉. We have

Wn |Φ〉 = sin ((2n+ 1)θ)|Ψ〉+ cos ((2n+ 1)θ)|Ψ⊥〉 W = RΦRΨ

and will need n ≈ π/4θ iterations to reach maximum success probability.

Oblivious amplitude amplification Berry et. al (2014)

For unitary H we only need W = −UR0U
†R0 where R0 reflects over |0〉m
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Quick recap on this last part
Brassard & Hoyer (1997), Grover (1998), Childs & Wiebe (2012), Berry et. al (2014-2015)

H =

L∑
k=1

αkUk with U †kUk = 1 and α =

L∑
k=1

αk ≥ ‖H‖

Linear Combination of Unitaries (LCU)

|0〉m VP
VS

V †P ⇒ |Φ〉 = U |Ψ〉 |0〉m = H
α |Ψ〉 |0〉m +

∣∣0⊥〉
|Ψ〉

⇒ the algorithm succeeds with probability P = 〈Ψ|H2|Ψ〉/α2.

Amplitude Amplification can boost probability at cost O
(

1/
√
P
)

Time evolution with Taylor exp. can achieve scaling O (αt log(αt/ε))

Standard Trotter-like approaches can only give O
(
t
1+ 1

η /ε
1
η

)
with η ≥ 1

use Oblivious Amplitude Amplification to achieve this deterministically
with much smaller prefactors (simpler reflection operators)
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Back to qubitization
Low & Chuang (2016)

|0〉m VP
VS

V †P ⇒ |Φ〉 = U |Ψ〉 |0〉m = H
α |Ψ〉 |0〉m +

∣∣0⊥〉
|Ψ〉

If we denote |φP 〉 = VP |0〉m the qubiterate WQ can be defined as

WQ = (2|φP 〉〈φP |−1)VS

one can show that if H/α =
∑

n λn|n〉〈n| then we can write

WQ |n〉 |φP 〉 = WQ |Pn〉 = λn |Pn〉+
√

1− λ2
n

∣∣∣P⊥n 〉
for every eigenstate ⇒ WQ generates rotations in span{|Pn〉 ,

∣∣P⊥n 〉} ∀n
WQ =

⊕
n

(
λn −

√
1− λ2

n√
1− λ2

n λn

)
=
⊕
n

eiY arccos(λn)
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What is this useful for?

WQ =
⊕
n

(
λn −

√
1− λ2

n√
1− λ2

n λn

)
=
⊕
n

eiY arccos(λn) ∼ eiỸ arccos(Hα )

we have a 2D invariant subspace for every eigenvalue ⇒ powers of the
qubiterate WQ will generate rotations in these subspaces

Quantum Signal Processing Low & Chuang (2016)

We can use this to generate polynomial functions of the Hamiltonian. Take

WQ(θ) =
⊕
n

(
λn −ie−iθ

√
1− λ2

n

ieiθ
√

1− λ2
n λn

)
= R(θ)WQR

†(θ)

where R(θ) uses VP , then we can use this phased iterate to generate
N∏
j=1

WQ(θj) =

N/2∑
j=1

[
aj

(
~θ
)

+ ibj

(
~θ
)](H

α

)j
(QSP+Taylor) ⇒ optimal scaling algorithm for time evolution
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What else is this useful for?

WQ =
⊕
n

(
λn −

√
1− λ2

n√
1− λ2

n λn

)
=
⊕
n

eiYn arccos(λn) ∼ eiỸ arccos(Hα )

the spectrum of WQ is the (almost) the same as the Hamiltonian

∀λn = En/α we have η± = exp (i± arccos(λn))

the qubiterate WQ can be implemented exactly using O(L2) gates

H =

L∑
k=1

αkUk with U †kUk = 1 and α =

L∑
k=1

αk ≥ ‖H‖

Quantum Phase Estimation with no time evolution Berry et al. (2018)

We can use WQ instead of exp (itH) to get the energy spectrum

can we use WQ to compute scattering-cross sections?
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the spectrum of WQ is the (almost) the same as the Hamiltonian

∀λn = En/α we have η± = exp (i± arccos(λn))

the qubiterate WQ can be implemented exactly using O(L2) gates

H =

L∑
k=1

αkUk with U †kUk = 1 and α =

L∑
k=1

αk ≥ ‖H‖

Quantum Phase Estimation with no time evolution Berry et al. (2018)

We can use WQ instead of exp (itH) to get the energy spectrum

can we use WQ to compute scattering-cross sections?

Alessandro Roggero JLAB - 18 Mar 2020 16 / 18



Qubitization for scattering cross section

Algorithm 1 Roggero & Carlson (2018)

prepare target state
apply excitation operator
measure energy using U(t)

final time evolution
measurement

Algorithm 2 Roggero, Li et al. (2019)

prepare target state
apply excitation operator
measure energy using WQ

final time evolution
measurement
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measure energy using U(t)

final time evolution
measurement

Algorithm 2 Roggero, Li et al. (2019)

prepare target state
apply excitation operator
measure energy using WQ

final time evolution
measurement
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What have we learned in these couple days
Quantum Computers are good at simulating time evolution for
Hamiltonians with 2 and 3-body interactions (and possibly others)

H =
∑
ij

Kija
†
iaj +

∑
ijkl

Uijkla
†
ia
†
jakal +

∑
ijklmn

Vijklmna
†
ia
†
ja
†
kalaman

Quantum Phase Estimation uses this to compute eigenvalues
exponentially faster than with (exact) classical methods

we can use this to prepare eigenstates
we can use this to compute cross sections
. . .

Quantum Computers are even better at evolving using the qubiterate

WQ ≈ exp

(
i arccos

(
H

α

))
we can use this to do time evolution faster: O (αt+ log(1/ε))
we can use this to compute cross sections faster
. . .

We will need to reduce gate counts considerably!
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