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The plan for today
nuclear dynamics, computation of scattering cross sections

EXAMPLE: neutrino-40Ar cross section for DUNE
inclusive scattering and the response function
calculation of two-point functions
direct calculation of response in frequency space

complexity of these calculations, can we actually run them on
current/near-term NISQ devices?

advanced algorithms + one slide on error correction

Fermionic Swap Networks
Linear Combination of Unitaries

Amplitude Amplification
Qubitization

Alessandro Roggero JLAB - 18 Mar 2020 1 / 14



Exclusive cross sections in neutrino oscillation experiments

Goals for ν oscillation exp.
neutrino masses
accurate mixing angles
CP violating phase

P (να → να) = 1− sin2(2θ)sin2

(
∆m2L

4Eν

)
need to use measured reaction products to constrain Eν of the event

DUNE, MiniBooNE, T2K, Minerνa, NOνA,. . .
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Inclusive cross section and the response function

xsection completely determined by response function

RO(ω) =
∑
f

∣∣∣〈f |Ô|Ψ0〉
∣∣∣2 δ (ω − Ef + E0)

excitation operator Ô specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

dipole response of 16O

Bacca et al. (2013) LIT+CC

quasi-elastic EM response of 12C

Lovato et al. (2016) GFMC
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∣∣∣2 δ (ω − Ef + E0)

excitation operator Ô specifies the vertex
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Real time correlation functions
The response function RO(ω) can be obtained from the two point function

CO(t) = 〈Ψ0|Ô†(t)Ô(0)|Ψ0〉 = FT−1 [RO(ω)]

using the Fourier transform. The final energy resolution is δ ∼ π/tmax.

if Ô is unitary, CO(t) can be computed efficiently [Somma et al. (2001)]

|0〉 H • H ⇒ 〈Z〉a = R
[
〈Ψ|U †AUB|Ψ〉

]
|Ψ〉 UA UB

Anti-controlled unitary

=
X • X

U U

Choose UB = U(t)Ô and UA = ÔU(t):

〈Z〉a = R
[
〈Ψ|U †(t)Ô†U(t)Ô|Ψ〉

]
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Real time correlation functions II
The response function RO(ω) can be obtained from the two point function

CO(t) = 〈Ψ0|Ô†(t)Ô(0)|Ψ0〉 = FT−1 [RO(ω)]

using the Fourier transform. The final energy resolution is δ ∼ π/tmax.

if Ô is unitary, CO(t) can be computed efficiently [Somma et al. (2001)]

|0〉 H • H
⇒ 〈Z〉a = R [CO(t)]

|Ψ〉 ÔU(t) U(t)Ô

H • • H
=

H • H

Ô U(t) U(t) Ô Ô U(2t) Ô

BONUS: no need for controlled time-evolution! Maximum time O(1/δ)
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BONUS: no need for controlled time-evolution! Maximum time O(1/δ)

Alessandro Roggero JLAB - 18 Mar 2020 5 / 14



Idealized algorithm for exclusive processes at fixed q
prepare the target ground state

right after scattering vertex the target is left in excited state
energy measurement selects subset of final nuclear states
further time evolution to let system decay
measure asymptotic state in detector

Roggero & Carlson (2018)
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Quantum algorithm for exclusive processes at fixed q
prepare the target ground state on a finite qubit basis
right after scattering vertex the target is left in excited state
energy measurement selects subset of final nuclear states
further time evolution to let system decay
measure asymptotic state in detector

Roggero & Carlson (2018)
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Quantum algorithm for exclusive processes at fixed q
prepare the target ground state on a finite qubit basis
apply vertex operator O(q) to ground state probabilistically
energy measurement selects subset of final nuclear states
further time evolution to let system decay
measure asymptotic state in detector

Roggero & Carlson (2018)
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[from yesterday] Can we apply a non-unitary operation?

YES, but only with some probability

this can be useful for example if the transition matrix element we
considered before is genereated by a non unitary operator

|0〉 H • H
⇒ |0〉 ⊗ 1+U

2 |φ〉+ |1〉 ⊗ 1−U
2 |φ〉

|φ〉 U

we will measure |0〉 with P0 = 1
2 (1 +R〈φ|U |φ〉) ⇒ |φ0〉 =

1 + U

2
√
P0
|φ〉

Concrete example: projection operators

If we take U to be the reflection around |ψ〉, like U = (2|ψ〉〈ψ|−1), we find

P0 = |〈φ|ψ〉|2 ⇒ |φ0〉 =
|ψ〉〈ψ|√
P0
|φ〉 = |ψ〉
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Quantum algorithm for exclusive processes at fixed q
prepare the target ground state on a finite qubit basis
apply vertex operator O(q) to ground state probabilistically
energy measurement selects subset of final nuclear states
further time evolution to let system decay
measure asymptotic state in detector

Roggero & Carlson (2018)
Alessandro Roggero JLAB - 18 Mar 2020 8 / 14



Quantum algorithm for exclusive processes at fixed q
prepare the target ground state on a finite qubit basis
apply vertex operator O(q) to ground state probabilistically
energy measurement selects subset of final nuclear states (finite ∆ω)
further time evolution to let system decay
measure asymptotic state in detector

Roggero & Carlson (2018)
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QPE on general states

|0〉 H · · · •

QFT †
...

...
...

|0〉 H • · · ·

|0〉 H • · · ·

|ΨO〉 U U2 · · · U2m−1

If we start with the excited state |ΨO〉 =
∑

j c
O
j |φj〉 we find

|Φ3〉 =
∑
j

cOj

2m−1∑
q=0

(
1

2m

2m−1∑
k=0

exp

(
i
2πk

2m
(2mφj − q)

))
|q〉 ⊗ |φj〉

The new probability becomes approximately SO with resolution ∆ω ≈ 1/M

P (q) =
1

M2

∑
j

∣∣cOj ∣∣2 sin2 (Mπ(φj − q/M))

sin2 (π(φj − q/M))
≈ SO

(
ω =

q

M

)
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Approximate response function with QPE
If we start with the excited state |ΨO〉 =

∑
j c
O
j |φj〉 we find,for M = 2m

P (q) =
1

M2

∑
j

∣∣cOj ∣∣2 sin2 (Mπ(φj − q/M))

sin2 (π(φj − q/M))
≈ SO

(
ω =

q

M

)

original response recovered for M →∞: SO(ω) =
∑

j

∣∣∣cOj ∣∣∣2 δ(φj − ω)

0 0.2 0.4 0.6 0.8
Frequency ω

0

0.1

0.2

0.3

0.4

0.5

Real response

Resolution
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QPE as state preparation

|0〉 H · · · •

QFT †
...

...
...

|0〉 H • · · ·

|0〉 H • · · ·

|ΨO〉 U U2 · · · U2m−1 |Ψq〉

before the ancilla measurement we have

|Φ3〉 =
∑
j

cOj

M−1∑
q=0

(
1

M

M−1∑
k=0

exp

(
i
2πk

M
(Mφj − q)

))
|q〉 ⊗ |φj〉

after measuring the integer value q the system qubits are left in

|Ψq〉 =
1

M
√
P (q)

∑
j

cOj
sin
(
Mπ(φj − q

M )
)

sin
(
π(φj − q

M )
) |φj〉 ≈ ∑

|φj− q
M
|. 1

M

cOj |φj〉

Alessandro Roggero JLAB - 18 Mar 2020 11 / 14



Quantum algorithm for exclusive processes at fixed q
prepare the target ground state on a finite qubit basis
apply vertex operator O(q) to ground state probabilistically
energy measurement selects subset of final nuclear states (finite ∆ω)
further time evolution to let system decay
measure asymptotic state in detector

Roggero & Carlson (2018)
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Quantum algorithm for exclusive processes at fixed q
prepare the target ground state on a finite qubit basis
right after scattering vertex the target is left in excited state
energy measurements selects subset of final nuclear states (finite ∆ω)
further approximate time evolution to let system decay
measure asymptotic state in detector

Roggero & Carlson (2018)
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How practical is all this?Can we make it in time for DUNE?
pionless EFT on a 103 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

we want SO(ω) with resolution ∆ω for a single excitation operator Ô
neglect overhead from error correction → lower bound on complexity
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∆ω=100 MeV∆ω=10 MeV
DUNE

For 40Ar we need ≈ 1012 − 1014 CNOT gates to run the QPE part

simple scheme: we have time for ≈ 5 samples (≈ 355) to estimate SO
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coherence time for 40Ar
simple ≈ 15 months

optimized ≈ 15 minutes

algorithm efficiency is critical
there is still a long way to go
find new algorithms and/or
approximations for near term

A.R., A.Li, J.Carlson, R.Gupta, G.Perdue (2019)
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Summary: quantum algorithms for the nuclear response

SO(ω) =

∫
dteiωtCO(t) with CO(t) = 〈Ψ0|O(t)O(0)|Ψ0〉

strategy A [Ortiz, Somma et al (2001-2003)]

compute CO(t) on quantum computer for different times
perform Fourier transform classically using tmax = O(1/∆)
the total cost is O(1/∆) gates and O

(
1

∆ε2

)
repetitions

strategy B [Roggero & Carlson (2018)]

sample directly final states from approximate response function

|ΦB〉 ≈
∑
ω

√
SO(ω) |ω〉 ⊗ |Ψω〉

cost is O(1/∆) gates (larger prefactor) and O
(
1/ε2

)
repetitions

◦ both algorithms have a gate cost of O (poly(A)/∆) for A nucleons
and target energy resolution ∆!
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Quantum Error Correction and the Threshold Theorem(s)
check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

effect of environment can be described using quantum channels
ρ =|Ψ〉〈Ψ| → Λ(ρ) =

∑
k
O†kρOk with

∑
k
O†kOk = 1

Bit-Flip error
ΛX(ρ) = (1− p)ρ+ pXρX

|1〉 Λx−−→
{
|1〉 with prob (1− p)
|0〉 with prob p

Phase-Flip error
ΛZ(ρ) = (1− p)ρ+ pZρZ

|+〉 Λz−→
{
|+〉 with prob (1− p)
|−〉 with prob p

this produces a finite coherence time τcoh ≈ 1/p
assume uncorrelated noise on every qubit ⇒ k errors with prob pk

simple error correction channel R fixes one error ⇒ prob 1 error is cp2

using q levels of concatenation we can bring this to c(cp2)2q

Threshold Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

If p < pth = 1/c we can extend τ effcoh with O
(
polylog

(
τ effcoh /c

))
effort

Alessandro Roggero JLAB - 18 Mar 2020 14 / 14



Quantum Error Correction and the Threshold Theorem(s)
check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

effect of environment can be described using quantum channels
ρ =|Ψ〉〈Ψ| → Λ(ρ) =

∑
k
O†kρOk with

∑
k
O†kOk = 1

Bit-Flip error
ΛX(ρ) = (1− p)ρ+ pXρX

|1〉 Λx−−→
{
|1〉 with prob (1− p)
|0〉 with prob p

Phase-Flip error
ΛZ(ρ) = (1− p)ρ+ pZρZ

|+〉 Λz−→
{
|+〉 with prob (1− p)
|−〉 with prob p

this produces a finite coherence time τcoh ≈ 1/p
assume uncorrelated noise on every qubit ⇒ k errors with prob pk

simple error correction channel R fixes one error ⇒ prob 1 error is cp2

using q levels of concatenation we can bring this to c(cp2)2q

Threshold Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

If p < pth = 1/c we can extend τ effcoh with O
(
polylog

(
τ effcoh /c

))
effort

Alessandro Roggero JLAB - 18 Mar 2020 14 / 14



Quantum Error Correction and the Threshold Theorem(s)
check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

effect of environment can be described using quantum channels
ρ =|Ψ〉〈Ψ| → Λ(ρ) =

∑
k
O†kρOk with

∑
k
O†kOk = 1

Bit-Flip error
ΛX(ρ) = (1− p)ρ+ pXρX

|1〉 Λx−−→
{
|1〉 with prob (1− p)
|0〉 with prob p

Phase-Flip error
ΛZ(ρ) = (1− p)ρ+ pZρZ

|+〉 Λz−→
{
|+〉 with prob (1− p)
|−〉 with prob p

this produces a finite coherence time τcoh ≈ 1/p

assume uncorrelated noise on every qubit ⇒ k errors with prob pk

simple error correction channel R fixes one error ⇒ prob 1 error is cp2

using q levels of concatenation we can bring this to c(cp2)2q

Threshold Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

If p < pth = 1/c we can extend τ effcoh with O
(
polylog

(
τ effcoh /c

))
effort

Alessandro Roggero JLAB - 18 Mar 2020 14 / 14



Quantum Error Correction and the Threshold Theorem(s)
check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

effect of environment can be described using quantum channels
ρ =|Ψ〉〈Ψ| → Λ(ρ) =

∑
k
O†kρOk with

∑
k
O†kOk = 1

Bit-Flip error
ΛX(ρ) = (1− p)ρ+ pXρX

|1〉 Λx−−→
{
|1〉 with prob (1− p)
|0〉 with prob p

Phase-Flip error
ΛZ(ρ) = (1− p)ρ+ pZρZ

|+〉 Λz−→
{
|+〉 with prob (1− p)
|−〉 with prob p

this produces a finite coherence time τcoh ≈ 1/p
assume uncorrelated noise on every qubit ⇒ k errors with prob pk

simple error correction channel R fixes one error ⇒ prob 1 error is cp2

using q levels of concatenation we can bring this to c(cp2)2q

Threshold Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

If p < pth = 1/c we can extend τ effcoh with O
(
polylog

(
τ effcoh /c

))
effort

Alessandro Roggero JLAB - 18 Mar 2020 14 / 14



Quantum Error Correction and the Threshold Theorem(s)
check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

effect of environment can be described using quantum channels
ρ =|Ψ〉〈Ψ| → Λ(ρ) =

∑
k
O†kρOk with

∑
k
O†kOk = 1

Bit-Flip error
ΛX(ρ) = (1− p)ρ+ pXρX

|1〉 Λx−−→
{
|1〉 with prob (1− p)
|0〉 with prob p

Phase-Flip error
ΛZ(ρ) = (1− p)ρ+ pZρZ

|+〉 Λz−→
{
|+〉 with prob (1− p)
|−〉 with prob p

this produces a finite coherence time τcoh ≈ 1/p
assume uncorrelated noise on every qubit ⇒ k errors with prob pk

simple error correction channel R fixes one error ⇒ prob 1 error is cp2

using q levels of concatenation we can bring this to c(cp2)2q

Threshold Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

If p < pth = 1/c we can extend τ effcoh with O
(
polylog

(
τ effcoh /c

))
effort

Alessandro Roggero JLAB - 18 Mar 2020 14 / 14



Quantum Error Correction and the Threshold Theorem(s)
check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

effect of environment can be described using quantum channels
ρ =|Ψ〉〈Ψ| → Λ(ρ) =

∑
k
O†kρOk with

∑
k
O†kOk = 1

Bit-Flip error
ΛX(ρ) = (1− p)ρ+ pXρX

|1〉 Λx−−→
{
|1〉 with prob (1− p)
|0〉 with prob p

Phase-Flip error
ΛZ(ρ) = (1− p)ρ+ pZρZ

|+〉 Λz−→
{
|+〉 with prob (1− p)
|−〉 with prob p

this produces a finite coherence time τcoh ≈ 1/p
assume uncorrelated noise on every qubit ⇒ k errors with prob pk

simple error correction channel R fixes one error ⇒ prob 1 error is cp2

using q levels of concatenation we can bring this to c(cp2)2q

Threshold Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

If p < pth = 1/c we can extend τ effcoh with O
(
polylog

(
τ effcoh /c

))
effort

Alessandro Roggero JLAB - 18 Mar 2020 14 / 14



Quantum Error Correction and the Threshold Theorem(s)
check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

effect of environment can be described using quantum channels
ρ =|Ψ〉〈Ψ| → Λ(ρ) =

∑
k
O†kρOk with

∑
k
O†kOk = 1

Bit-Flip error
ΛX(ρ) = (1− p)ρ+ pXρX

|1〉 Λx−−→
{
|1〉 with prob (1− p)
|0〉 with prob p

Phase-Flip error
ΛZ(ρ) = (1− p)ρ+ pZρZ

|+〉 Λz−→
{
|+〉 with prob (1− p)
|−〉 with prob p

this produces a finite coherence time τcoh ≈ 1/p
assume uncorrelated noise on every qubit ⇒ k errors with prob pk

simple error correction channel R fixes one error ⇒ prob 1 error is cp2

using q levels of concatenation we can bring this to c(cp2)2q

Threshold Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

If p < pth = 1/c we can extend τ effcoh with O
(
polylog

(
τ effcoh /c

))
effort

Alessandro Roggero JLAB - 18 Mar 2020 14 / 14


