Nuclear structure (and reactions) with Quantum Computers - III

Alessandro Roggero

figure credit: μ BooNE collab.

figure credit: IBM

QC and QIS for NP

JLAB - 18 March, 2020

The plan for today

- nuclear dynamics, computation of scattering cross sections
 - EXAMPLE: neutrino-⁴⁰Ar cross section for DUNE
 - inclusive scattering and the response function
 - calculation of two-point functions
 - direct calculation of response in frequency space
- complexity of these calculations, can we actually run them on current/near-term NISQ devices?

• advanced algorithms + one slide on error correction

- Fermionic Swap Networks
- Linear Combination of Unitaries

- Amplitude Amplification
- Qubitization

Exclusive cross sections in neutrino oscillation experiments

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

• need to use measured reaction products to constrain E_{ν} of the event

DUNE, MiniBooNE, T2K, Miner ν a, NO ν A,...

Inclusive cross section and the response function

• xsection completely determined by response function

$$R_O(\omega) = \sum_f \left| \langle f | \hat{O} | \Psi_0 \rangle \right|^2 \delta \left(\omega - E_f + E_0 \right)$$

 $\bullet\,$ excitation operator \hat{O} specifies the vertex

q, w

Inclusive cross section and the response function

• xsection completely determined by response function

$$R_O(\omega) = \sum_f \left| \langle f | \hat{O} | \Psi_0 \rangle \right|^2 \delta \left(\omega - E_f + E_0 \right)$$

• excitation operator \hat{O} specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

Real time correlation functions

The response function $R_O(\omega)$ can be obtained from the two point function

$$C_O(t) = \langle \Psi_0 | \hat{O}^{\dagger}(t) \hat{O}(0) | \Psi_0 \rangle = F T^{-1} \left[R_O(\omega) \right]$$

using the Fourier transform. The final energy resolution is $\delta \sim \pi/t_{max}$.

• if \hat{O} is unitary, $C_O(t)$ can be computed efficiently [Somma et al. (2001)]

Real time correlation functions

The response function $R_O(\omega)$ can be obtained from the two point function

$$C_O(t) = \langle \Psi_0 | \hat{O}^{\dagger}(t) \hat{O}(0) | \Psi_0 \rangle = F T^{-1} \left[R_O(\omega) \right]$$

using the Fourier transform. The final energy resolution is $\delta \sim \pi/t_{max}$.

• if \hat{O} is unitary, $C_O(t)$ can be computed efficiently [Somma et al. (2001)]

$$\Rightarrow \langle Z \rangle_a = \mathcal{R} \left[\langle \Psi | U_A^{\dagger} U_B | \Psi \rangle \right]$$

Choose
$$U_B = U(t)\hat{O}$$
 and $U_A = \hat{O}U(t)$:
 $\langle Z \rangle_a = \mathcal{R} \left[\langle \Psi | U^{\dagger}(t) \hat{O}^{\dagger} U(t) \hat{O} | \Psi \rangle \right]$

Alessandro Roggero

Real time correlation functions II

The response function $R_O(\omega)$ can be obtained from the two point function

$$C_O(t) = \langle \Psi_0 | \hat{O}^{\dagger}(t) \hat{O}(0) | \Psi_0 \rangle = F T^{-1} \left[R_O(\omega) \right]$$

using the Fourier transform. The final energy resolution is $\delta \sim \pi/t_{max}$.

• if \hat{O} is unitary, $C_O(t)$ can be computed efficiently [Somma et al. (2001)]

Real time correlation functions II

The response function $R_O(\omega)$ can be obtained from the two point function

$$C_O(t) = \langle \Psi_0 | \hat{O}^{\dagger}(t) \hat{O}(0) | \Psi_0 \rangle = F T^{-1} \left[R_O(\omega) \right]$$

using the Fourier transform. The final energy resolution is $\delta \sim \pi/t_{max}$.

• if \hat{O} is unitary, $C_O(t)$ can be computed efficiently [Somma et al. (2001)]

BONUS: no need for controlled time-evolution! Maximum time $\mathcal{O}(1/\delta)$

Alessandro Roggero

• prepare the target ground state

Roggero & Carlson (2018)

Alessandro Roggero

JLAB - 18 Mar 2020 6 / 14

- prepare the target ground state
- right after scattering vertex the target is left in excited state

Roggero & Carlson (2018)

- prepare the target ground state
- right after scattering vertex the target is left in excited state

Roggero & Carlson (2018)

- prepare the target ground state
- right after scattering vertex the target is left in excited state

- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states

- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay

- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

- prepare the target ground state on a finite qubit basis
- apply vertex operator O(q) to ground state probabilistically
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

[from yesterday] Can we apply a non-unitary operation?

YES, but only with some probability

• this can be useful for example if the transition matrix element we considered before is genereated by a non unitary operator

$$\begin{array}{c|c} |0\rangle & \hline H & \hline H & \hline \\ |\phi\rangle & \hline U & \hline \end{array} \Rightarrow \quad |0\rangle \otimes \frac{\mathbb{1}+U}{2} |\phi\rangle + |1\rangle \otimes \frac{\mathbb{1}-U}{2} |\phi\rangle \\ |\phi\rangle & \hline \end{array}$$

• we will measure $|0\rangle$ with $P_0 = \frac{1}{2} \left(1 + \mathcal{R} \langle \phi | U | \phi \rangle \right) \Rightarrow |\phi_0\rangle = \frac{1 + U}{2\sqrt{P_0}} |\phi\rangle$

Concrete example: projection operators

If we take U to be the reflection around $|\psi\rangle$, like $U=(2|\psi\rangle\langle\psi|-\mathbb{1}),$ we find

$$P_0 = |\langle \phi | \psi \rangle|^2 \quad \Rightarrow \quad |\phi_0\rangle = \frac{|\psi\rangle\langle\psi|}{\sqrt{P_0}} |\phi\rangle = |\psi\rangle$$

- prepare the target ground state on a finite qubit basis
- apply vertex operator O(q) to ground state probabilistically
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

- prepare the target ground state on a finite qubit basis
- apply vertex operator O(q) to ground state probabilistically
- energy measurement selects subset of final nuclear states (finite $\Delta \omega$)
- further time evolution to let system decay
- measure asymptotic state in detector

QPE on general states

If we start with the excited state $|\Psi_O\rangle = \sum_j c_j^O \left|\phi_j\right\rangle$ we find

$$|\Phi_{3}\rangle = \sum_{j} c_{j}^{O} \sum_{q=0}^{2^{m}-1} \left(\frac{1}{2^{m}} \sum_{k=0}^{2^{m}-1} \exp\left(i\frac{2\pi k}{2^{m}} \left(2^{m} \phi_{j} - q\right)\right) \right) |q\rangle \otimes |\phi_{j}\rangle$$

The new probability becomes approximately S_O with resolution $\Delta\omega\approx 1/M$

$$P(q) = \frac{1}{M^2} \sum_{j} |c_j^O|^2 \frac{\sin^2 (M\pi(\phi_j - q/M))}{\sin^2 (\pi(\phi_j - q/M))} \approx S_O\left(\omega = \frac{q}{M}\right)$$

Alessandro Roggero

If we start with the excited state $|\Psi_O\rangle = \sum_j c_j^O \, |\phi_j\rangle$ we find,for $M=2^m$

$$P(q) = \frac{1}{M^2} \sum_{j} |c_j^O|^2 \frac{\sin^2 (M\pi(\phi_j - q/M))}{\sin^2 (\pi(\phi_j - q/M))} \approx S_O\left(\omega = \frac{q}{M}\right)$$

If we start with the excited state $|\Psi_O
angle=\sum_j c_j^O |\phi_j
angle$ we find,for $M=2^m$

$$P(q) = \frac{1}{M^2} \sum_{j} |c_j^O|^2 \frac{\sin^2 (M\pi(\phi_j - q/M))}{\sin^2 (\pi(\phi_j - q/M))} \approx S_O\left(\omega = \frac{q}{M}\right)$$

If we start with the excited state $|\Psi_O
angle=\sum_j c_j^O |\phi_j
angle$ we find,for $M=2^m$

$$P(q) = \frac{1}{M^2} \sum_{j} |c_j^O|^2 \frac{\sin^2 (M\pi(\phi_j - q/M))}{\sin^2 (\pi(\phi_j - q/M))} \approx S_O\left(\omega = \frac{q}{M}\right)$$

If we start with the excited state $|\Psi_O
angle=\sum_j c_j^O |\phi_j
angle$ we find,for $M=2^m$

$$P(q) = \frac{1}{M^2} \sum_{j} |c_j^O|^2 \frac{\sin^2 (M\pi(\phi_j - q/M))}{\sin^2 (\pi(\phi_j - q/M))} \approx S_O\left(\omega = \frac{q}{M}\right)$$

QPE as state preparation

• before the ancilla measurement we have

$$|\Phi_{3}\rangle = \sum_{j} c_{j}^{O} \sum_{q=0}^{M-1} \left(\frac{1}{M} \sum_{k=0}^{M-1} \exp\left(i \frac{2\pi k}{M} \left(M \phi_{j} - q \right) \right) \right) |q\rangle \otimes |\phi_{j}\rangle$$

 \bullet after measuring the integer value q the system qubits are left in

$$|\Psi_q\rangle = \frac{1}{M\sqrt{P(q)}} \sum_j c_j^O \frac{\sin\left(M\pi(\phi_j - \frac{q}{M})\right)}{\sin\left(\pi(\phi_j - \frac{q}{M})\right)} |\phi_j\rangle \approx \sum_{|\phi_j - \frac{q}{M}| \lesssim \frac{1}{M}} c_j^O |\phi_j\rangle$$

Alessandro Roggero

- prepare the target ground state on a finite qubit basis
- \bullet apply vertex operator ${\cal O}(q)$ to ground state probabilistically
- energy measurement selects subset of final nuclear states (finite $\Delta \omega$)
- further time evolution to let system decay
- measure asymptotic state in detector

- prepare the target ground state on a finite qubit basis
- apply vertex operator O(q) to ground state probabilistically
- energy measurements select subset of final nuclear states (finite $\Delta \omega$)
- further time evolution to let system decay
- measure asymptotic state in detector

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurements selects subset of final nuclear states (finite $\Delta \omega$)
- further approximate time evolution to let system decay
- measure asymptotic state in detector

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower bound on complexity

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower $\,bound\,$ on complexity $\,$

For $^{40}\mathrm{Ar}$ we need $\approx 10^{12}-10^{14}$ CNOT gates to run the QPE part

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower $\,bound\,$ on complexity $\,$

For $^{40}\mathrm{Ar}$ we need $\approx 10^{12}-10^{14}$ CNOT gates to run the QPE part

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower $\,bound\,$ on complexity

For $^{40}\mathrm{Ar}$ we need $\approx 10^{12}-10^{14}$ CNOT gates to run the QPE part

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- \bullet neglect overhead from error correction \rightarrow lower bound on complexity

For $^{40}\mathrm{Ar}$ we need $\approx 10^{12}-10^{14}$ CNOT gates to run the QPE part

• simple scheme: we have time for ≈ 5 samples (≈ 355) to estimate S_O

• pionless EFT on a 10^3 lattice of size $20~{\rm fm}~[a=2.0~{\rm fm}]$

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower bound on complexity

• simple scheme: we have time for ≈ 5 samples (≈ 355) to estimate S_O

 \bullet simple scheme: we need to keep coherence for ≈ 15 months (6 days)

• pionless EFT on a 10^3 lattice of size $20~{\rm fm}~[a=2.0~{\rm fm}]$

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower bound on complexity

• simple scheme: we need to keep coherence for ≈ 15 months (6 days)

• parallel scheme: we need to keep coherence for ≈ 11 hours (9 minutes)

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower bound on complexity

• simple scheme: we need to keep coherence for ≈ 15 months (6 days)

- parallel scheme: we need to keep coherence for ≈ 11 hours (9 minutes)
- faster schemes: we need to keep coherence for ≈ 15 minutes (36 sec.)

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower bound on complexity

• simple scheme: we need to keep coherence for ≈ 15 months (6 days)

- parallel scheme: we need to keep coherence for ≈ 11 hours (9 minutes)
- faster schemes: we need to keep coherence for ≈ 15 minutes (36 sec.)

• pionless EFT on a 10^3 lattice of size 20 fm [a = 2.0 fm]

we need a quantum device with ≈ 4000 qubits (currently we have < 100)

- we want $S_O(\omega)$ with resolution $\Delta \omega$ for a single excitation operator \hat{O}
- $\bullet\,$ neglect overhead from error correction $\rightarrow\,$ lower bound on complexity

Summary: quantum algorithms for the nuclear response $S_O(\omega) = \int dt e^{i\omega t} C_O(t)$ with $C_O(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$

strategy A

- [Ortiz, Somma et al (2001-2003)]
- compute $C_O(t)$ on quantum computer for different times
- perform Fourier transform classically using $t_{max} = \mathcal{O}(1/\Delta)$
- the total cost is $\mathcal{O}(1/\Delta)$ gates and $\mathcal{O}\left(\frac{1}{\Delta\epsilon^2}\right)$ repetitions
- strategy B [Roggero & Carlson (2018)]
 - sample directly final states from approximate response function

$$|\Phi_B
angle pprox \sum_{\omega} \sqrt{S_O(\omega)} |\omega
angle \otimes |\Psi_{\omega}
angle$$

• cost is $\mathcal{O}(1/\Delta)$ gates (larger prefactor) and $\mathcal{O}\left(1/\epsilon^2\right)$ repetitions

Summary: quantum algorithms for the nuclear response $S_O(\omega) = \int dt e^{i\omega t} C_O(t)$ with $C_O(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$

strategy A

- [Ortiz, Somma et al (2001-2003)]
- compute $C_O(t)$ on quantum computer for different times
- perform Fourier transform classically using $t_{max} = \mathcal{O}(1/\Delta)$
- the total cost is $\mathcal{O}(1/\Delta)$ gates and $\mathcal{O}\left(\frac{1}{\Delta\epsilon^2}\right)$ repetitions
- strategy B [Roggero & Carlson (2018)]
 - sample directly final states from approximate response function

$$|\Phi_B
angle pprox \sum_{\omega} \sqrt{S_O(\omega)} |\omega
angle \otimes |\Psi_{\omega}
angle$$

• cost is $\mathcal{O}(1/\Delta)$ gates (larger prefactor) and $\mathcal{O}\left(1/\epsilon^2\right)$ repetitions

• both algorithms have a gate cost of $\mathcal{O}(\operatorname{poly}(A)/\Delta)$ for A nucleons and target energy resolution Δ !

Summary: quantum algorithms for the nuclear response $S_O(\omega) = \int dt e^{i\omega t} C_O(t)$ with $C_O(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$

strategy A

- [Ortiz, Somma et al (2001-2003)]
- compute $C_O(t)$ on quantum computer for different times
- perform Fourier transform classically using $t_{max} = \mathcal{O}(1/\Delta)$
- the total cost is $\mathcal{O}(1/\Delta)$ gates and $\mathcal{O}\left(\frac{1}{\Delta\epsilon^2}\right)$ repetitions
- strategy B [Roggero & Carlson (2018)]
 - sample directly final states from approximate response function

$$|\Phi_B
angle pprox \sum_{\omega} \sqrt{S_O(\omega)} |\omega
angle \otimes |\Psi_{\omega}
angle$$

• cost is $\mathcal{O}(1/\Delta)$ gates (larger prefactor) and $\mathcal{O}\left(1/\epsilon^2\right)$ repetitions

- $\circ~$ both algorithms have a gate cost of $\mathcal{O}\left(\mathsf{poly}(A)/\Delta\right)$ for A nucleons and target energy resolution $\Delta!$
- $\circ\,$ both algorithms are (probably) too expensive for a realistic description of final states in neutrino $^{40}{\rm Ar}$ scattering with NISQ devices

Quantum Error Correction and the Threshold Theorem(s)

check out lecture notes from: S.Aaronson, D.Bacon, A.Childs & J.Preskill

• effect of environment can be described using quantum channels

$$\rho = |\Psi\rangle \langle \Psi| \quad \rightarrow \quad \Lambda(\rho) = \sum_k O_k^\dagger \rho O_k \quad \text{with} \quad \sum_k O_k^\dagger O_k = \mathbb{1}$$

• effect of environment can be described using quantum channels

$$\rho = |\Psi\rangle \langle \Psi| \quad \rightarrow \quad \Lambda(\rho) = \sum_k O_k^\dagger \rho O_k \quad \text{with} \quad \sum_k O_k^\dagger O_k = \mathbb{1}$$

Bit-Flip errorPhase-Flip error $\Lambda_X(\rho) = (1-p)\rho + pX\rho X$ $\Lambda_Z(\rho) = (1-p)\rho + pZ\rho Z$ $|1\rangle \xrightarrow{\Lambda_x} \begin{cases} |1\rangle \text{ with prob } (1-p) \\ |0\rangle \text{ with prob } p \end{cases}$ $|+\rangle \xrightarrow{\Lambda_z} \begin{cases} |+\rangle \text{ with prob } (1-p) \\ |-\rangle \text{ with prob } p \end{cases}$

• effect of environment can be described using quantum channels

$$\rho = |\Psi\rangle \langle \Psi| \quad \rightarrow \quad \Lambda(\rho) = \sum_k O_k^\dagger \rho O_k \quad \text{with} \quad \sum_k O_k^\dagger O_k = \mathbb{1}$$

Bit-Flip error

$$\Lambda_X(\rho) = (1-p)\rho + pX\rho X$$

$$|1\rangle \xrightarrow{\Lambda_x} \begin{cases} |1\rangle & \text{with prob} \quad (1-p) \\ |0\rangle & \text{with prob} \quad p \end{cases}$$

$$\Lambda_Z(\rho) = (1-p)\rho + pZ\rho Z$$

$$|+\rangle \xrightarrow{\Lambda_z} \begin{cases} |+\rangle & \text{with prob} \quad (1-p) \\ |-\rangle & \text{with prob} \quad p \end{cases}$$

 \bullet this produces a finite coherence time $\tau_{coh}\approx 1/p$

• effect of environment can be described using quantum channels

$$\rho = |\Psi\rangle \langle \Psi| \quad \rightarrow \quad \Lambda(\rho) = \sum_k O_k^\dagger \rho O_k \quad \text{with} \quad \sum_k O_k^\dagger O_k = \mathbb{1}$$

Bit-Flip error

$$\Lambda_X(\rho) = (1-p)\rho + pX\rho X$$

$$|1\rangle \xrightarrow{\Lambda_x} \begin{cases} |1\rangle & \text{with prob} \quad (1-p) \\ |0\rangle & \text{with prob} \quad p \end{cases}$$

Phase-Flip error

$$\Lambda_Z(\rho) = (1-p)\rho + pZ\rho Z$$

$$|+\rangle \xrightarrow{\Lambda_z} \begin{cases} |+\rangle & \text{with prob} \quad (1-p) \\ |-\rangle & \text{with prob} \quad p \end{cases}$$

- \bullet this produces a finite coherence time $\tau_{coh}\approx 1/p$
- assume uncorrelated noise on every qubit $\Rightarrow k$ errors with prob p^k

• effect of environment can be described using quantum channels

$$\rho = |\Psi\rangle \langle \Psi| \quad \rightarrow \quad \Lambda(\rho) = \sum_k O_k^\dagger \rho O_k \quad \text{with} \quad \sum_k O_k^\dagger O_k = \mathbb{1}$$

Bit-Flip error

$$\Lambda_X(\rho) = (1-p)\rho + pX\rho X$$

$$|1\rangle \xrightarrow{\Lambda_x} \begin{cases} |1\rangle & \text{with prob} \quad (1-p) \\ |0\rangle & \text{with prob} \quad p \end{cases}$$

Phase-Flip error

$$\Lambda_Z(\rho) = (1-p)\rho + pZ\rho Z$$

$$|+\rangle \xrightarrow{\Lambda_z} \begin{cases} |+\rangle & \text{with prob} \quad (1-p) \\ |-\rangle & \text{with prob} \quad p \end{cases}$$

- \bullet this produces a finite coherence time $\tau_{coh}\approx 1/p$
- assume uncorrelated noise on every qubit $\Rightarrow k$ errors with prob p^k
- simple error correction channel R fixes one error \Rightarrow prob 1 error is cp^2

• effect of environment can be described using quantum channels

$$\rho = |\Psi\rangle \langle \Psi| \quad \rightarrow \quad \Lambda(\rho) = \sum_k O_k^\dagger \rho O_k \quad \text{with} \quad \sum_k O_k^\dagger O_k = \mathbb{1}$$

Bit-Flip error

$$\Lambda_X(\rho) = (1-p)\rho + pX\rho X$$

$$|1\rangle \xrightarrow{\Lambda_x} \begin{cases} |1\rangle & \text{with prob} \quad (1-p) \\ |0\rangle & \text{with prob} \quad p \end{cases}$$

Phase-Flip error

$$\Lambda_Z(\rho) = (1-p)\rho + pZ\rho Z$$

$$|+\rangle \xrightarrow{\Lambda_z} \begin{cases} |+\rangle & \text{with prob} \quad (1-p) \\ |-\rangle & \text{with prob} \quad p \end{cases}$$

- \bullet this produces a finite coherence time $\tau_{coh}\approx 1/p$
- assume uncorrelated noise on every qubit $\Rightarrow k$ errors with prob p^k
- simple error correction channel R fixes one error \Rightarrow prob 1 error is cp^2
- using q levels of concatenation we can bring this to $c(cp^2)^{2^q}$

• effect of environment can be described using quantum channels

$$\rho = |\Psi\rangle \langle \Psi| \quad \rightarrow \quad \Lambda(\rho) = \sum_k O_k^\dagger \rho O_k \quad \text{with} \quad \sum_k O_k^\dagger O_k = \mathbb{1}$$

Bit-Flip error

$$\Lambda_X(\rho) = (1-p)\rho + pX\rho X$$

$$|1\rangle \xrightarrow{\Lambda_x} \begin{cases} |1\rangle & \text{with prob} \quad (1-p) \\ |0\rangle & \text{with prob} \quad p \end{cases}$$

Phase-Flip error

$$\Lambda_Z(\rho) = (1-p)\rho + pZ\rho Z$$

$$|+\rangle \xrightarrow{\Lambda_z} \begin{cases} |+\rangle & \text{with prob} \quad (1-p) \\ |-\rangle & \text{with prob} \quad p \end{cases}$$

- \bullet this produces a finite coherence time $\tau_{coh}\approx 1/p$
- assume uncorrelated noise on every qubit $\Rightarrow k$ errors with prob p^k
- simple error correction channel R fixes one error \Rightarrow prob 1 error is cp^2
- using q levels of concatenation we can bring this to $c(cp^2)^{2^q}$

Threshold Theorem(s)

Ben-Or, Aharonov, Kitaev, Knill, Gottesman,...

If $p < p_{th} = 1/c$ we can extend τ_{coh}^{eff} with $\mathcal{O}\left(\mathsf{polylog}\left(\tau_{coh}^{eff}/c\right)\right)$ effort