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Combinatorial optimization
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Adiabatic evolution

Initial Hamiltonian H; (simple), final Hamiltonian Hp (target)

H(0) = H;, H(tp) = Hr

H(t)=“=H;+Hp

tp

The unitary time evolution operator is

U(t + dt, t) _ e—z’H(t)dt
[W(t +dt)) = U(t + dt, t) [i(t))

[W(t2)) = Ul(ta,t1) [10(t1))



Start from an eigenstate of the initial Hamiltonian

Hr|Yr) = Erl|Yr)

In the limit of slow time evolution we remain in an eigenstate of H(t)

throughout

¥(t)) = U, 0) [¢1)
H(1) [¢(1)) = E(t) [1)(1))

And so at the end of the evolution we have

Hp [)(tr)) = Er [{(tF))



Quantum annealing

Quantum annealing is the application of adiabatic evolution to a
combinatorial optimization problem. Consider, for example, the Ising

spin glass
S Z 2
HF = —ZJZ']'O'Z-O']-
(5)
For the initial Hamiltonian we can take the simple operator

HI:_ZO_?

with ground state

Py =lo" = 1) @lo” = 1)@
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We then apply adiabatic evolution

H(0) = Hy, H(tp) = Hp

H(t) — tF—tHI—‘,—%HF

tp

[W(t)) = U(t,0) [vr)
At the end of the evolution we have

Hp [)(tr)) = Er [Y(tF))
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Trotter approximation

The Hamiltonian usually contains terms that do not commute. For the

time evolution we have

U(t+ dt,t) = e H(D)dt

for

We can use the Trotter approximation

' trp—t .t
—iH (t)dt 7 HIdte—th Hpdt

e ~e tF
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And so we have

tE _.tF—O _.&
dete ZtFHth---e 1 o dete ZtFHFClt

tp—1g

Ultr,0)m ¢ " s

This is very difficult to implement on current quantum devices due to the

large number of gates required per qubit.
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Quantum approximate optimization algorithm

Farhi, Goldstone, Gutmann, arXiv:1411.4028 (2014) [quant-ph]

The quantum approximate optimization algorithm (QAOA) is a cheap

approximation to adiabatic evolution. We make the variational ansatz

U(g ’7) ~ e—iﬁkae—’i%HF L e—iﬁlee—i’YlHF
9

We then use the variational principle

—

Bt < (8, 7) [ Hpl (5, 7))
and minimize the value of E(8,7) = (¢(3,7)|Hr|v(5,7))
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arXiv:1910.07708

Projected Cooling Algorithm for Quantum Computation

Dean Lee,! Joey Bonitati,! Gabriel Given,' Caleb Hicks,' Ning Li,!
Bing-Nan Lu,' Abudit Rai,! Avik Sarkar,! and Jacob Watkins'

!Facility for Rare Isotope Beams and Department of Physics and Astronomy,
Michigan State University, East Lansing, MI 48824, USA

In the current era of noisy quantum devices, there is a need for quantum algorithms that are efficient
and robust against noise. Towards this end, we introduce the projected cooling algorithm for quantum
computation. The projected cooling algorithm is able to construct the localized ground state of
any Hamiltonian with a translationally-invariant kinetic energy. The method can be viewed as the
quantum analog of evaporative cooling. We start with an initial state with support over a compact
region of a large volume. We then drive the excited quantum states to disperse and measure the
remaining portion of the wave function left behind. The method can be used in concert with other
techniques such as variational methods and adiabatic evolution to achieve better performance than
existing approaches for the same number of quantum gates per qubit. For the nontrivial examples we
consider here, the improvement is substantial. The only additional resource required is performing

the operations in a volume significantly larger than the size of the localized state.
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Projected cooling algorithm

Consider a Hamiltonian H with a translationally-invariant kinetic energy

and a localized ground state

H 1) = Eq o)

We first consider the case where there is exactly one bound state. We
take the system volume to be infinite (or large enough to avoid
rebounding reflections from the boundary). Let P be a projection
operator onto a compact region p. In the limit of large time ¢, the

projected time evolution has a stable fixed point

Pe™ P ipr) — e P [yo) (wol Pler)
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Reflection rebound
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Limit cycle
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For the case where there are more than one bound state and want extract
only the ground state, we need a time-dependent Hamiltonian. We first
evolve to the ground state of another Hamiltonian that has only one

bound state
H' [4) = B} 14%)

We then use adiabatic evolution to flow to the ground state of the

desired Hamiltonian H.
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One-particle system on an L = 51 chain
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Two-particle system on two linked L = 51 chains

1
-..-..-;_y-h-.:.---h
e -
. ',/ -
0.8 | &~ -~ %
‘n"“ /¢/¢ .
o o /&9/
~ " .
o8 - ’@
0 6 s ""6
S i
ﬁ“,& -
© L B oV
R 6 J
047 7 R
l.. '/ m ¢/
:.' '/ / ;/
O. / ’
" -
ol
* -
0.2_' - mmm Il-lllllIIIIIII.-.....-...-...-.

o 1 1 ]
0 10 20 30 40
Nt
----- AE, full evolution, point initial, error =0

== AE, Trotter evolution, point initial, error = 0

® AE, Trotter evolution, point initial, error = 0.05
====PC, full evolution, point initial, error =0
= =PC, Trotter evolution, point initial, error = 0

& PC, Trotter evolution, point initial, error = 0.05
-------- PC, full evolution, spread initial, error = 0
—=-==PC, Trotter evolution, spread initial, error =0

¢ PC, Trotter evolution, spread initial, error = 0.05

23



Comparison of wave functions
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& JavaFXpert @JavaFXpert - Oct 19

Congrats to Jacob Watkins, llaria Siloi and @Joey_Bonitati for winning first
place in the #qcbq #QuantumComputing Bootcamp with @qiskit hackathon at

@michiganstateu #IBMQ
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arXiv:2002.06222

Projective cooling for the transverse Ising model

Erik J. Gustafson!
! Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA
(Dated: February 18, 2020)

We demonstrate the feasibility of ground state preparation for the transverse Ising model using
projective cooling, and show that the algorithm can effectively construct the ground state in the
disordered (paramagnetic) phase. On the other hand, significant temperature effects are encountered
in the ordered (ferromagnetic) phase requiring larger lattices to accurately simulate.
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Figure 1: Depiction of the regions R; and R, for a
lattice with N, = 10 total sites and an N, = 4 sites
contained within R,. In this case N; = 4 and
No=T7
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Figure 3: Energy per site of the state using
projective cooling as a function of time in the
ordered phase; J = 1.4, ng = 6.
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Figure 6: Re-scaled magnetic susceptibility as a
function of the re-scaled nearest neighbor coupling
for various ratios of Ny/Nj. Black (online) curve: is

an interpolation for the exact magnetic
susceptibility for 14 sites; green (online) points and
blue (online) crosses: the calculated susceptibilities
using projective cooling.
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Recap of lecture

Combinatorial optimization
Adiabatic theorem and adiabatic evolution
Quantum annealing
Quantum approximate optimization algorithm
Projected cooling algorithm

Transverse Ising model
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