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Minimum spanning tree
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Combinatorial optimization



Maximum Cut
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Ising spin glass
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Adiabatic theorem



Adiabatic theorem
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Adiabatic evolution

Initial Hamiltonian HI (simple), final Hamiltonian HF (target)

The unitary time evolution operator is
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Start from an eigenstate of the initial Hamiltonian

In the limit of slow time evolution we remain in an eigenstate of H(t) 

throughout

And so at the end of the evolution we have
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Quantum annealing

Quantum annealing is the application of adiabatic evolution to a 

combinatorial optimization problem.  Consider, for example, the Ising

spin glass

For the initial Hamiltonian we can take the simple operator

with ground state
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We then apply adiabatic evolution

At the end of the evolution we have
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Trotter approximation

The Hamiltonian usually contains terms that do not commute.  For the 

time evolution we have

for

We can use the Trotter approximation
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And so we have

This is very difficult to implement on current quantum devices due to the 

large number of gates required per qubit.
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The quantum approximate optimization algorithm (QAOA) is a cheap 

approximation to adiabatic evolution.  We make the variational ansatz

Quantum approximate optimization algorithm

We then use the variational principle

and minimize the value of  

Farhi, Goldstone, Gutmann, arXiv:1411.4028 (2014) [quant-ph]



arXiv:1910.07708
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Consider a Hamiltonian H with a translationally-invariant kinetic energy 

and a localized ground state

We first consider the case where there is exactly one bound state.  We 

take the system volume to be infinite (or large enough to avoid 

rebounding reflections from the boundary).  Let P be a projection 

operator onto a compact region r. In the limit of large time t, the 

projected time evolution has a stable fixed point 
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Projected cooling algorithm
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five random initial states

Overlap with
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Convergence rate
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Reflection rebound
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We then use adiabatic evolution to flow to the ground state of the 

desired Hamiltonian H.
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For the case where there are more than one bound state and want extract 

only the ground state, we need a time-dependent Hamiltonian.  We first 

evolve to the ground state of another Hamiltonian that has only one 

bound state   



0 10 20 30 40
Nt

0

0.2

0.4

0.6

0.8

1

O
(t)

A

AE, full evolution, point initial, error = 0
AE, Trotter evolution, point initial, error = 0
AE, Trotter evolution, point initial, error = 0.05
PC, full evolution, point initial, error = 0
PC, Trotter evolution, point initial, error = 0
PC, Trotter evolution, point initial, error = 0.05
PC, full evolution, spread initial, error = 0
PC, Trotter evolution, spread initial, error = 0
PC, Trotter evolution, spread initial, error = 0.05

One-particle system on an L = 51 chain

22



0 10 20 30 40
Nt

0

0.2

0.4

0.6

0.8

1

O
(t)

B

AE, full evolution, point initial, error = 0
AE, Trotter evolution, point initial, error = 0
AE, Trotter evolution, point initial, error = 0.05
PC, full evolution, point initial, error = 0
PC, Trotter evolution, point initial, error = 0
PC, Trotter evolution, point initial, error = 0.05
PC, full evolution, spread initial, error = 0
PC, Trotter evolution, spread initial, error = 0
PC, Trotter evolution, spread initial, error = 0.05

Two-particle system on two linked L = 51 chains

23



Comparison of wave functions
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Recap of lecture
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