
Dean Lee 
Facility for Rare Isotope Beams

Michigan State University

Co-ordinated Mini-Lecture Series on
Quantum Computing and Quantum Information Science

for Nuclear Physics

Jefferson Laboratory
March 16, 2020

1

Quantum algorithms for Nuclear Physics II



Outline

Scale invariance

Quantum scale anomalies

Realization with trapped ions

Discrete scale invariance for two bosons

Time fractals

Variational quantum eigensolver

Cloud quantum computing of the deuteron

2



Scale invariance

Start with a one-dimensional classical Hamiltonian H(p, r) with momentum 
p and position r. Suppose that the Hamiltonian can be written in the form

We can show that this classical system is scale invariant.  Consider any 
simultaneous rescaling of p and r where

The Hamiltonian transforms as
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Let us also rescale time t as

Exactly the same equations of motion hold for the rescaled variables with 
the same functional form for the Hamiltonian H,

The equations of motion are
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We conclude that the system is scale invariant.



Quantum scale anomalies

In quantum mechanics and quantum field theory, scale invariance can be 
spoiled by quantum scale anomalies.  This happens when there are bound 
states, which necessarily correspond to discrete energy levels.

Nevertheless it may happen that a discrete subgroup of the scale symmetry 
is preserved for the dynamics of certain sectors of the Hilbert space.

This phenomenon was first noted by Efimov for bound states of three 
bosons when the two-body interactions are pointlike and the interaction 
strength is tuned to produce a zero-energy two-body resonance.

Efimov, Sov. J. Nucl. Phys. 12, 589 (1971); Efimov, Phys. Rev. C47 1876 (1993)
Bedaque, Hammer, van Kolck, Phys. Rev. Lett. 82 463 (1999)
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Zinner et al., J. Phys. G40 053101 (2013)

Efimov trimers
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Wikipedia

Realization with trapped ions
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Zhang et al., Nature 543, 217 (2017), Zhang et al., Nature 551, 601 (2017)
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Our trapped ion Hamiltonian has the form

where

and C is a constant.
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We can rewrite the Ising-like terms in the Hamiltonian as 

where

We will regard the state with all spins pointing in the positive z direction 
as the vacuum state.  Then any spin in the negative z direction can be 
regarded as a hardcore boson.  It is not possible to have more than one 
hardcore boson on the same site. 
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In terms of the hardcore boson annihilation and creation operators, our
Hamiltonian is now 

Let us now take

This choice ensures that a zero-momentum boson has zero energy.  We now 
consider the dispersion relation for one boson.  
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For a boson with momentum p, the energy is

At low momenta, this can be simplified as
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We now introduce a single-site deep trapping potential that traps one 
boson at some site i0

We choose the position of site i0 to be r = 0. We subtract a constant from 
the Hamiltonian so that the energy of this state is exactly zero.

r = 0
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For future reference, we call this state
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We now add one more boson to the system.  We regard the immobile boson 
at r = 0 as a static source.

where we have dropped terms of O(p2). We will consider the case where 
both J0 and V0 are negative.  In order that the Hamiltonian have classical 
scale invariance, we take  

The low-energy effective Hamiltonian for the mobile boson is

Discrete scale invariance for two bosons

Therefore
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In the limit of zero energy, the bound-state wave functions have the 
following forms for even and odd parity

where

The case          corresponds to a Hamiltonian of the form
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We can rewrite the zero-energy bound-state solutions as

Under the scale transformations 

For the case
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The bound state energies form a geometric progression

The wave functions exhibit discrete scale invariance when the scale 
factors are

The general formulae are
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The first twelve even-parity bound-state wave functions:
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We use a phase convention where all of the bound-state wave functions are 
real valued. Let us construct a coherent superposition of the first N even-
parity bound states, where N is large. 

We could have just as easily chosen odd-parity bound states.  We now 
consider the amplitude

Aside from corrections of relative size 1/N from endpoint terms at n = 0 
and n = N – 1, the amplitude is invariant under the discrete rescaling of 
time. 

Time fractals
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Given the self-replicating behavior of the amplitude under time rescaling, 
we call it a time fractal.

We choose an integer time scaling factor 

by taking the parameters
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This is a particular case of the Weierstrass function, 

In our case we take a                 and truncate after a finite number of 
terms.  The next slide shows a picture of the Weierstrass function for 
a = 0.5, b = 3. 
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The Weierstrass function has fractal dimension

Hardy, Trans. Amer. Math. Soc. 17, 301 (1916)
Hunt, Proc. Amer. Math. Soc. 126, 791 (1998)
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We now show how to produce time fractals directly with the trapped ion 
quantum simulator.  We start with the function S(r) defined as

Using this function, we define the following product of single-qubit
rotations

When acting on the state with one boson immobilized at r = 0, we get 



26

Recall that we added a constant to the Hamiltonian so that

We can now use the quantum simulator to determine

This corresponds to measuring the projection operator          on the state 

If we expand in we get



27

This can be rewritten as

We can therefore extract the time fractal amplitude A(t).
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Variational quantum eigensolver

A variational quantum eigensolver is a variational method where unitary 
transformations with several free parameters are used to construct an 
approximate ground state wave function.  The expectation value of each of 
the terms in the Hamiltonian are computed on a quantum computer for 
various values of free parameters.  The parameters are chosen to minimize 
the expectation value of the Hamiltonian.



T. Papenbrock

Dumitrescu et al., Phys. Rev. Lett. 120, 210501 (2018) 29
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