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Goal: Describe entire landscape of nuclear properties
in a controlled and unified way grounded in QCD
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The ab initio nuclear many-body problem is extremely complicated and among the most computationally

intensive fields of science. Requires efficient theoretical frameworks and large-scale calculations.



Vast majority of dynamical processes out of reach even with exascale
computing. Promise of exact simulations with quantum processors.
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The LLNL testbed differs from superconducting-cavity quantum
processing units found in industry in architecture and control
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The LLNL testbed adopts a software-extensible quantum computing architecture



Lawrence Livermore National Laboratory physicist Jonathan DuBois, who heads the
Lab’s Quantum Coherent Device Physics (QCDP) group, examines a prototype
quantum computing device designed to solve quantum simulation problems. The device
is kept inside a refrigerated vacuum tube (gold-plated to provide solid thermal
matching) at temperatures colder than outer space. Photos by Carrie Martin/LLNL



Our disruptive solution:
Single-gate, control model of quantum computing

= A quantum computer performs calculations by manipulating quantum states

= The manipulation occurs by means of unitary operations (quantum gates), the
guantum analog of Boolean logic operations (AND, OR, NOT, ...)
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Quantum processing unit (QPU) Hamiltonian

Hopy = Hg + H.(t)

= Hamiltonian for a 3D transmon coupled = Time-dependent drive for a single-mode

to a readout cavity transmon (in the frame of the transmon)
H; = hwradtd; + hwgpdia At | A
d e RTRTR H.(t) = he; (t)(@7 + dr)
~ 2
—E; [cos@ +_<p] ; At _ A
J [€OSP; T + ihe, (1) (a7 — ar)




We use numerical optimization to find a customized drive that
implements the target unitary transformation (quantum gate)

Utarg = Texp
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Start with a simple, yet non trivial nuclear physics problem

Describe how two nucleons evolve in
time under the effect of their mutual
interaction

= |Interaction at leading-order (LO) of
chiral effective field theory (EFT)

= Spin dynamics of 2 neutrons ‘frozen in
space’ (parametric dependence on
coordinates)

NN force @LO
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Start with a simple, yet non trivial nuclear physics problem

Describe how two nucleons evolve in
time under the effect of their mutual
interaction

= |nteraction at leading-order (LO) of
chiral effective field theory (EFT)

= Spin dynamics of 2 neutrons ‘frozen in
space’ (parametric dependence on
coordinates)

= Non-trivial dependence on the spin
state of the neutrons

NN force @LO
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Start with a simple, yet non trivial nuclear physics problem

Describe how two nucleons evolve in
time under the effect of their mutual
interaction

= |nteraction at leading-order (LO) of
chiral effective field theory (EFT)

= Spin dynamics of 2 neutrons ‘frozen in
space’ (parametric dependence on
coordinates)

= Quantum-classical co-processing, with
spin propagation carried out by a QPU

NN force @LO

Unitary time propagator
(infinitesimal time step)
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= exp [_%HSI(St] exp [_ %VSDSt]
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Demonstration of noise-resilient real-time evolution of
two interacting neutrons on the LLNL quantum testbed

= Prepare QPU initial state: e.g., |§¢)

= Perform time evolution by
dividing into small time steps:
repeat same gate at each time step

= Due to the nucleons’ interaction,
with time the QPU evolves into an
entangled superposition of
the 3 states

= Measure time-dependent
probability with which QPU
occupies each spin state
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We use numerical optimization to find a customized drive that
implements the desired two-neutron spin short-time propagator
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Demonstration of noise-resilient real-time evolution of
two interacting neutrons on the LLNL quantum testbed

= Prepare QPU initial state: e.g.,
wé) Occupation probability of nucleons’ spin states

= Perform time evolution by
dividing into small time steps:
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Euclidean algorithm

ged(A, B) =7

A=BQi1+
B = R1Q2+ Ry
Ri = Ro@Qs3 + R3

Ryr—o = Ry QN + Ry
Ry = ng(A, B)
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M. Hayward

Shor’s algorithm

Step 1

Determine if the number N is a prime, an even number, or an
integer power of a prime number. If yes to any of these, we do not
need Shor’s algorithm. There are efficient classical methods for
determining if an integer NN belongs to one of the above categories.
This step would be performed on a classical computer.
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Step 2
Pick an integer g which is the power of 2 such that
N? < g < 2N*?

This step would be done on a classical computer.
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Step 3

Pick a random integer = that is relatively prime to N. There are
efficient classical methods for picking such an z. This step would be
done on a classical computer.

20



Step 4

Create a quantum register and partition it into two parts, register 1 and
register 2.

Register 1 must have enough qubits to represent integers as large as g — 1.
Register 2 must have enough qubits to represent integers as large as N — 1.
The calculations for how many qubits are needed would be done on a
classical computer.
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Step 5

Load register 1 with an equally weighted superposition of states
labelled by all integers from 0 to ¢ — 1. Load register 2 in the
zero state. This operation would be performed by the quantum
computer. The total state of the quantum memory register at
this point is

= |CL,O>
\/a a=0
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Step 6

Now apply the transformation % mod N to each number stored in
register 1 and store the result in register 2. This is the most difficult
step of Shor’s algorithm to implement, and some have argued that the
efficient implementation of modular exponentiation might be an
unresolved gap in the algorithm. The state of the quantum memory
register at this point is

R

\/aZ\a,a:a mod N)
a=0
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Step 7
Measure register 2, and observe some value k. This has the side effect

of collapsing register 1 into an equal superposition of each value a
between 0 and g — 1 such that

¥ mod N =k

Let A be set of all such values for a. The state of the quantum memory
register after this step is

1
> la’ k)
VI 2=,

The integers in set A will be spaced apart in multiples of r, where r is

the multiplicative order of . This is the smallest positive number such
that

" mod N =1
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Step 8

Now apply the quantum Fourier transform to register 1. The state
in the quantum memory register is now

HA Z Z‘ 27m'a/c/q

a’ €A c=0
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Step 9

Measure the state of register 1, call this value m, this integer

m has a very high probability of being a multiple of g/r, where r is
the desired period. This step is performed by the quantum
computer.
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Step 10

Take the value m, and on a classical computer do some post processing
to determine r based on knowledge of m and gq. There are efficient
ways to do this post processing on a classical computer.
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Step 11

Once you have attained r and it is even, then the prime factors in
the factorization N = pq can be determined by taking

p = ged(a/2 + 1, N) and g = ged(a™/2 — 1, N) or vice versa. The
gcd can be computed using the Euclidean algorithm.

This assumes that r is even. If that is not the case then go back

to step 3 and pick another random x that is relative prime to V.
This final step is done on a classical computer.
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Recap of lecture

Nuclear dynamics on a quantum chip
Designer pulse control
Two-nucleon system

Shor’s algorithm
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