Quantum algorithms for Nuclear Physics I

Dean Lee
Facility for Rare Isotope Beams
Michigan State University
Co-ordinated Mini-Lecture Series on
Quantum Computing and Quantum Information Science
for Nuclear Physics
Jefferson Laboratory
March 16, 2020 A SciDAC-4 Project

Outline

Qubits

Bloch sphere
Single-qubit gates

Two-qubit gates
Jordan-Wigner transformation
Quantum Fourier transform
Quantum circuits and performance
Lattice methods for nuclear physics

Qubits

The basic element in quantum computation is the qubit, which is a simply a two-level quantum system.

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

There are also extensions to systems with more than two levels, known as qudits. But we will focus on qubits in these lectures.

In general, our qubit will be in a general superposition of the two states.

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad|\psi\rangle=\alpha\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

With proper normalization we have

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

Up to an overall complex phase, we can write

$$
\begin{aligned}
|\psi\rangle= & \cos (\theta / 2)|0\rangle+e^{i \varphi} \sin (\theta / 2)|1\rangle \\
& 0 \leq \theta \leq \pi, 0 \leq \varphi<2 \pi
\end{aligned}
$$

This can be represented as a point on the Bloch sphere

For a two-qubit system we have the four basis states

$$
|00\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad|01\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad|10\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad|11\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Any arbitrary state can be written as

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

with normalization

$$
\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1
$$

For the N-qubit system, any arbitrary state can be written as

$$
|\psi\rangle=\sum_{i_{1} \in\{0,1\}} \cdots \sum_{i_{N} \in\{0,1\}} \alpha_{i_{1} \cdots i_{N}}\left|i_{1} \cdots i_{N}\right\rangle
$$

with normalization

$$
\sum_{i_{1} \in\{0,1\}} \cdots \sum_{i_{N} \in\{0,1\}}\left|\alpha_{i_{1} \cdots i_{N}}\right|^{2}=1
$$

Single-Qubit Gates

Since the evolution of quantum systems is unitary, all quantum gates are unitary.

Identity gate

$$
\begin{gathered}
\mathbf{I}|0\rangle=|0\rangle, \mathbf{I}|1\rangle=|1\rangle \\
\mathbf{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]} \\
\mathbf{I}^{\dagger}=\mathbf{I}=\mathbf{I}^{-1}
\end{gathered}
$$

NOT gate (= Pauli-X gate)

If we view 0 and 1 as logical false and true, then the NOT gate corresponds to a logical negation or bit flip that exchanges 0 and 1.

$$
\begin{gathered}
\mathbf{X}|0\rangle=|1\rangle, \mathbf{X}|1\rangle=|0\rangle \\
\mathbf{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]} \\
\mathbf{X}^{\dagger}=\mathbf{X}=\mathbf{X}^{-1}
\end{gathered}
$$

The \mathbf{X} notation for NOT has a double meaning, since \mathbf{X} can also be viewed as the Pauli- X gate.

Pauli-Y gate

$$
\begin{gathered}
\mathbf{Y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
-i \beta \\
i \alpha
\end{array}\right]} \\
\mathbf{Y}^{\dagger}=\mathbf{Y}=\mathbf{Y}^{-1}
\end{gathered}
$$

Pauli-Z gate

$$
\begin{gathered}
\mathbf{Z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
-\beta
\end{array}\right]} \\
\mathbf{Z}^{\dagger}=\mathbf{Z}=\mathbf{Z}^{-1}
\end{gathered}
$$

Hadamard gate

$$
\begin{gathered}
\mathbf{H}|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle, \mathbf{H}|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle \\
\mathbf{H}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \\
\mathbf{H}^{\dagger}=\mathbf{H}=\mathbf{H}^{-1}
\end{gathered}
$$

Phase gate

$$
\begin{gathered}
\mathbf{R}_{\phi}|0\rangle=|0\rangle, \mathbf{R}_{\phi}|1\rangle=e^{i \phi}|1\rangle \\
\mathbf{R}_{\phi}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right] \\
\mathbf{R}_{\phi}^{\dagger}=\mathbf{R}_{-\phi}=\mathbf{R}_{\phi}^{-\mathbf{1}}
\end{gathered}
$$

Two-Qubit Gates

Controlled-NOT (C-NOT) gate

$$
\begin{array}{cc}
|00\rangle \rightarrow|00\rangle \quad|01\rangle & \rightarrow|01\rangle
\end{array}|10\rangle \rightarrow|11\rangle \quad|11\rangle \rightarrow|10\rangle
$$

$$
|00\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad|01\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad|10\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad|11\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Controlled Phase gate

$$
|00\rangle \rightarrow|00\rangle \quad|01\rangle \rightarrow|01\rangle \quad|10\rangle \rightarrow|10\rangle \quad|11\rangle \rightarrow e^{i \phi}|11\rangle
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{i \phi}
\end{array}\right]
$$

$$
|00\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad|01\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad|10\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad|11\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

SWAP gate

$$
|00\rangle \rightarrow|00\rangle \quad|01\rangle \rightarrow|10\rangle \quad|10\rangle \rightarrow|01\rangle \quad|11\rangle \rightarrow|11\rangle
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
|00\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad|01\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad|10\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad|11\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Jordan-Wigner transformation

Our qubit basis states

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

are reminiscent of the possible occupation numbers of a fermionic particle.

To make this connection exact, we also need to incorporate Fermi/Dirac statistics. The Jordan-Wigner transformation is one way to encode this information.

Suppose we have a system of qubits then we can write

$$
\begin{aligned}
a_{k} & =\mathbf{Z}_{1} \cdots \mathbf{Z}_{k-1}\left(\mathbf{X}_{k} / 2+i \mathbf{Y}_{k} / 2\right) \\
a_{k}^{\dagger} & =\mathbf{Z}_{1} \cdots \mathbf{Z}_{k-1}\left(\mathbf{X}_{k} / 2-i \mathbf{Y}_{k} / 2\right)
\end{aligned}
$$

Therefore fermionic bilinear have the form

$$
\begin{aligned}
a_{k}^{\dagger} a_{k+n} & =\mathbf{Z}_{k} \cdots \mathbf{Z}_{k+n-1}\left(\mathbf{X}_{k} / 2-i \mathbf{Y}_{k} / 2\right)\left(\mathbf{X}_{k+n} / 2+i \mathbf{Y}_{k+n} / 2\right) \\
a_{k+n}^{\dagger} a_{k} & =\mathbf{Z}_{k} \cdots \mathbf{Z}_{k+n-1}\left(\mathbf{X}_{k+n} / 2-i \mathbf{Y}_{k+n} / 2\right)\left(\mathbf{X}_{k} / 2+i \mathbf{Y}_{k} / 2\right)
\end{aligned}
$$

Quantum Fourier transform

In the following we are discussing discrete Fourier transforms. We let N be a power of 2

$$
N=2^{n}
$$

The classical Fourier transform acts on a string of N complex numbers

$$
\left(a_{0}, a_{1}, \cdots, a_{N-1}\right) \in C^{N}
$$

and outputs another string of N complex numbers

$$
\left(b_{0}, b_{1}, \cdots, b_{N-1}\right) \in C^{N}
$$

according to the rule

$$
b_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} a_{j} \omega_{N}^{k j} \quad \omega_{N}=e^{2 \pi i / N}
$$

The quantum Fourier transform acts on a quantum state as

$$
\operatorname{QFT}: \sum_{j=0}^{N-1} a_{j}|j\rangle \rightarrow \sum_{j=0}^{N-1} b_{j}|j\rangle
$$

where

$$
b_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} a_{j} \omega_{N}^{k j}
$$

In matrix form the unitary matrix we need is

$$
F_{N}=\frac{1}{\sqrt{N}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(N-1)} \\
1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{N-1} & \omega^{(N-1) 2} & \omega^{(N-1) 3} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right]
$$

When building a quantum circuit that produces this unitary transformation, it suffices to show that the transformation is correct for each of the N basis states

$$
|j\rangle=|0\rangle, \cdots,\left|2^{n}-1\right\rangle
$$

We represent the integer j in binary representation

$$
j=j_{1} 2^{n-1}+j_{2} 2^{n-2} \cdots+j_{n} 2^{0}=\left[j_{1} j_{2} \cdots j_{n}\right]
$$

Using this binary representation we can write our basis as tensor product of qubits

$$
|j\rangle=\left|j_{1} j_{2} \cdots j_{n}\right\rangle=\left|j_{1}\right\rangle \otimes\left|j_{2}\right\rangle \otimes \cdots \otimes\left|j_{n}\right\rangle
$$

It is also convenient to use the fractional binary notation

$$
\left[0 . j_{1} \cdots j_{m}\right]=\sum_{k=1}^{m} j_{k} 2^{-k}
$$

So that, for example,

$$
\left[0 . j_{1}\right]=\frac{j_{1}}{2} \quad\left[0 . j_{1} j_{2}\right]=\frac{j_{1}}{2}+\frac{j_{2}}{2^{2}}
$$

We will show that

$$
\begin{gathered}
\operatorname{QFT}\left(\left|j_{1} j_{2} \cdots j_{n}\right\rangle\right)= \\
\frac{1}{\sqrt{N}}\left(|0\rangle+e^{2 \pi i\left[0 . j_{n}\right]}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i\left[0 . j_{n-1} j_{n}\right]}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i\left[0 . j_{1} j_{2} \cdots j_{n}\right]}|1\rangle\right)
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{QFT}\left(\left|j_{1} j_{2} \cdots j_{n}\right\rangle\right) & =\frac{1}{\sqrt{N}} \sum_{k=0}^{2^{n}-1} \omega_{N}^{j k}|k\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{k_{1}=0,1} \cdots \sum_{k_{n}=0,1} \omega_{N}^{j \sum_{l=1}^{n} k_{l} 2^{n-l}\left|k_{1} k_{2} \cdots k_{n}\right\rangle} \\
& =\frac{1}{\sqrt{N}} \sum_{k_{1}=0,1} \cdots \sum_{k_{n}=0,1} \bigotimes_{l=1}^{n} \omega_{N}^{j k_{l} 2^{n-l}\left|k_{l}\right\rangle} \\
& =\frac{1}{\sqrt{N}} \sum_{k_{1}=0,1} \cdots \sum_{k_{n}=0,1} \omega_{N}^{j k_{1} 2^{n-1}}\left|k_{1}\right\rangle \otimes \bigotimes_{l=2}^{n} \omega_{N}^{j k_{l} 2^{n-l}\left|k_{l}\right\rangle} \\
& =\frac{1}{\sqrt{N}}\left(\sum_{k_{1}=0,1} \omega_{N}^{j k_{1} 2^{n-1}}\left|k_{1}\right\rangle\right) \otimes \sum_{k_{2}=0,1} \cdots \sum_{k_{n}=0,1} \bigotimes_{l=2}^{n} \omega_{N}^{j k_{l} 2^{n-l}}\left|k_{l}\right\rangle \\
& =\frac{1}{\sqrt{N}} \bigotimes_{l=1}^{n} \sum_{k_{l}=0,1} \omega_{N}^{j k_{l} 2^{n-l}}\left|k_{l}\right\rangle \\
& =\frac{1}{\sqrt{N}} \bigotimes_{l=1}^{n}\left(|0\rangle+\omega_{N}^{j 2^{n-l}}|1\rangle\right)
\end{aligned}
$$

So far we have shown

$$
\operatorname{QFT}\left(\left|j_{1} j_{2} \cdots j_{n}\right\rangle\right)=\frac{1}{\sqrt{N}} \bigotimes_{l=1}^{n}\left(|0\rangle+\omega_{N}^{j 2^{n-l}}|1\rangle\right)
$$

We note that

$$
\omega_{N}^{j 2^{n-l}}=e^{\frac{2 \pi i}{2^{n} j} 2^{n-l}}=e^{2 \pi i j 2^{-l}}
$$

Only the fractional part of $j 2^{-l}$ needs to be kept since the integer part produces a factor of 1 . For example,

$$
\omega_{N}^{j 2^{2-1}}=e^{2 \pi i\left[0 . j_{n}\right]} \quad \omega_{N}^{j 2^{n-2}}=e^{2 \pi i\left[0 . j_{n-1} j_{n}\right]}
$$

In the general case

$$
\omega_{N}^{j 2^{n-l}}=e^{2 \pi i\left[0 \cdot j_{n-l+1} \cdots j_{n}\right]}
$$

We therefore conclude that

$\operatorname{QFT}\left(\left|j_{1} j_{2} \cdots j_{n}\right\rangle\right)=$

$$
\frac{1}{\sqrt{N}}\left(|0\rangle+e^{2 \pi i\left[0 . j_{n}\right]}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i\left[0 \cdot j_{n-1} j_{n}\right]}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i\left[0 . j_{1} j_{2} \cdots j_{n}\right]}|1\rangle\right)
$$

$$
\begin{gathered}
\mathbf{H}|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle, \mathbf{H}|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle \\
\mathbf{R}_{l}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{2 \pi i}{2^{l}}}
\end{array}\right]
\end{gathered}
$$

Quantum Fourier transform $\sim O\left(n^{2}\right)$ gates
Classical Fourier transform $\sim O\left(n 2^{n}\right)$ gates

Annealing quantum processors [edit]

These QPUs are based on quantum annealing.

Manufacturer *	Name/Codename/Designation ${ }^{-}$	Architecture -	Layout *	Socket ${ }^{-}$	Fidelity $\boldsymbol{*}$	Qubits *	Release date
D-Wave	D-Wave One (Ranier)	Superconducting	N/A	N/A	N/A	128 qb	11 May 2011
D-Wave	D-Wave Two	Superconducting	N/A	N/A	N/A	512 qb	2013
D-Wave	D-Wave 2X	Superconducting	N/A	N/A	N/A	1152 qb	2015
D-Wave	D-Wave 2000Q	Superconducting	N/A	N/A	N/A	2048 qb	2017
D-Wave	D-Wave Advantage	Superconducting	N/A	N/A	N/A	5000 qb	2020

Wikipedia

Circuit-based quantum processors [edit]
These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

Manufacturer ${ }^{\text {- }}$	Name/Codename/Designation *	Architecture *	Layout \uparrow	Socket $\hat{*}$	Fidelity $\quad \stackrel{\rightharpoonup}{\text { a }}$	Qubits *	Release date
Google	N/A	Superconducting	N/A	N/A	99.5\% ${ }^{[1]}$	20 qb	2017
Google	N/A	Superconducting	7×7 lattice	N/A	99.7\% ${ }^{11]}$	$49 \mathrm{qb}^{[2]}$	Q4 2017 (planned)
Google	Bristlecone	Superconducting	6×12 lattice	N/A	99\% (readout) 99.9\% (1 qubit) 99.4\% (2 qubits)	$72 \mathrm{qb}{ }^{[3][4]}$	5 March 2018
Google	Sycamore	Nonlinear superconducting resonator	N/A	N/A	N/A	54 transmon qb 53 qb effective	2019
IBM	IBM Q 5 Tenerife	Superconducting	bow tie	N/A	99.897\% (average gate) 98.64\% (readout)	5 qb	$2016{ }^{[1]}$
IBM	IBM Q 5 Yorktown	Superconducting	bow tie	N/A	99.545\% (average gate) 94.2\% (readout)	5 qb	
IBM	IBM Q 14 Melbourne	Superconducting	N/A	N/A	99.735\% (average gate) 97.13\% (readout)	14 qb	
IBM	IBM Q 16 Rüschlikon	Superconducting	2×8 lattice	N/A	99.779\% (average gate) 94.24\% (readout)	$16 \mathrm{qb}^{[5]}$	$\begin{aligned} & 17 \text { May } 2017 \\ & \text { (Retired: } 26 \text { September 2018) }{ }^{[6]} \end{aligned}$
IBM	IBM Q 17	Superconducting	N/A	N/A	N/A	$17 \mathrm{qb}^{[5]}$	17 May 2017
IBM	IBM Q 20 Tokyo	Superconducting	5×4 lattice	N/A	99.812\% (average gate) 93.21\% (readout)	$20 \mathrm{qb}^{[7]}$	10 November 2017
IBM	IBM Q 20 Austin	Superconducting	5×4 lattice	N/A	N/A	20 qb	(Retired: 4 July 2018) ${ }^{[6]}$
IBM	IBM Q 50 prototype	Superconducting	N/A	N/A	N/A	$50 \mathrm{qb}^{[7]}$	
IBM	IBM Q 53	Superconducting	N/A	N/A	N/A	53 qb	October 2019
Intel	17-Qubit Superconducting Test Chip	Superconducting	N/A	40-pin cross gap	N/A	$17 \mathrm{qb}{ }^{[8][9]}$	10 October 2017
Intel	Tangle Lake	Superconducting	N/A	108-pin cross gap	N/A	$49 \mathrm{qb}{ }^{\text {[10] }}$	9 January 2018
Rigetti	8Q Agave	Superconducting	N/A	N/A	N/A	8 qb	4 June 2018 ${ }^{[11]}$
Rigetti	16Q Aspen-1	Superconducting	N/A	N/A	N/A	16 qb	30 November 2018 ${ }^{[11]}$
Rigetti	19Q Acorn	Superconducting	N/A	N/A	N/A	$19 \mathrm{qb}^{[12]}$	17 December 2017
IBM	IBM Armonk ${ }^{[13]}$	Superconducting	Single Qubit	N/A	N/A	1 qb	16 October 2019
IBM	IBM Ourense ${ }^{[13]}$	Superconducting	T	N/A	N/A	5 qb	03 July 2019
IBM	IBM Vigo ${ }^{[13]}$	Superconducting	T	N/A	N/A	5 qb	03 July 2019
IBM	IBM London ${ }^{[13]}$	Superconducting	T	N/A	N/A	5 qb	13 September 2019
IBM	IBM Burlington ${ }^{[13]}$	Superconducting	T	N/A	N/A	5 qb	13 September 2019
IBM	IBM Essex ${ }^{[13]}$	Superconducting	T	N/A	N/A	5 qb	13 September 2019

	Tenerife	Tokyo	Poughkeepsie	System One
Two-qubit CNOT error rate	4.02%	2.84%	2.25%	1.69%
Single qubit error rate	0.17%	0.20%	0.11%	0.04%

IBM Q

IBM Q

Lattice methods for nuclear physics

Lattice quantum chromodynamics

Lattice effective field theory

Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009)
Springer Lecture Notes: Lähde, Meißner, "Nuclear Lattice Effective Field Theory" (2019)

Chiral effective field theory

Construct the effective potential order by order

$$
a=1.315 \mathrm{fm}
$$

Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018)

$$
a=0.987 \mathrm{fm}
$$

Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018)

Recap of lecture

Qubits

Bloch sphere
Single-qubit gates

Two-qubit gates
Jordan-Wigner transformation
Quantum Fourier transform
Quantum circuits and performance
Lattice methods for nuclear physics

