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Qubits
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The basic element in quantum computation is the qubit, which is a 
simply a two-level quantum system.

There are also extensions to systems with more than two levels, known 
as qudits.  But we will focus on qubits in these lectures.

In general, our qubit will be in a general superposition of the two states.

With proper normalization we have
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Up to an overall complex phase, we can write

Credit: Smite-Meister

This can be represented as a point on the Bloch sphere



For a two-qubit system we have the four basis states

Any arbitrary state can be written as

For the N-qubit system, any arbitrary state can be written as
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with normalization



with normalization
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Single-Qubit Gates

Identity gate
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Since the evolution of quantum systems is unitary, all quantum gates are 
unitary.



NOT gate (= Pauli-X gate) 

If we view 0 and 1 as logical false and true, then the NOT gate 
corresponds to a logical negation or bit flip that exchanges 0 and 1.
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The X notation for NOT has a double meaning, since X can also be viewed 
as the Pauli-X gate. 



Pauli-Y gate

Pauli-Z gate
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Phase gate

Hadamard gate
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Two-Qubit Gates

Controlled-NOT (C-NOT) gate

XOR
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Controlled Phase gate
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SWAP gate
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Jordan-Wigner transformation

Our qubit basis states 

are reminiscent of the possible occupation numbers of a fermionic particle.  

To make this connection exact, we also need to incorporate Fermi/Dirac 
statistics.  The Jordan-Wigner transformation is one way to encode this 
information. 

Suppose we have a system of qubits then we can write 
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Therefore fermionic bilinear have the form



Quantum Fourier transform

In the following we are discussing discrete Fourier transforms.  We let N
be a power of 2

The classical Fourier transform acts on a string of N complex numbers
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and outputs another string of N complex numbers

according to the rule
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The quantum Fourier transform acts on a quantum state as

where

In matrix form the unitary matrix we need is
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When  building a quantum circuit that produces this unitary 
transformation, it suffices to show that the transformation is correct for 
each of the N basis states

We represent the integer j in binary representation

Using this binary representation we can write our basis as tensor product 
of qubits
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It is also convenient to use the fractional binary notation

So that, for example, 

We will show that
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So far we have shown

We note that

Only the fractional part of       needs to be kept since the integer part 
produces a factor of 1.  For example,

In the general case
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We therefore conclude that
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Wikipedia
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Wikipedia 26



Tenerife Tokyo Poughkeepsie System One

Two-qubit 
CNOT error rate

4.02% 2.84% 2.25% 1.69%

Single qubit 
error rate

0.17% 0.20% 0.11% 0.04%

IBM Q
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IBM Q
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ORNL

Lattice methods for nuclear physics



Lattice quantum chromodynamics

JICFuS, Tsukuba
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Lattice effective field theory
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Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009)
Springer Lecture Notes: Lähde, Meißner, “Nuclear Lattice Effective Field Theory” (2019) 
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Construct the effective potential order by order
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Contact interactions

Leading order (LO) Next-to-leading order (NLO)

Chiral effective field theory



33Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018)

Figures by Ning Li
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Figures by Ning Li



Recap of lecture
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