## Quantum States and Quantum Operations

Chi-Kwong Li<br>Department of Mathematics, The College of William and Mary. Institute for Quantum Computing, University of Waterloo.

## A quantum computing model



Quantum bit (Qubit)

## A quantum computing model



Quantum bit (Qubit)

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.


## A quantum computing model



Quantum bit (Qubit)

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.


## A quantum computing model



Quantum bit (Qubit)

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.
- Prepare the initial (entangled) quantum states.


## A quantum computing model



Quantum bit (Qubit)

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.
- Prepare the initial (entangled) quantum states.
- Prepare a suitable environment for the quantum system to evolve according to quantum mechanical rules.


## A quantum computing model



Quantum bit (Qubit)

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.
- Prepare the initial (entangled) quantum states.
- Prepare a suitable environment for the quantum system to evolve according to quantum mechanical rules.
- Apply suitable measurement to extract useful information.


## Mathematical framework

- Mathematically, quantum states are represented by density matrices,


## Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.


## Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are


## Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are trace preserving completely positive linear (TPCP) maps.


## Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_{n} \rightarrow M_{m}$ has the operator sum representation:

$$
\Phi(\rho)=F_{1} \rho F_{1}^{\dagger}+\cdots+F_{r} \rho F_{r}^{\dagger}
$$

for some $m \times n$ matrices $F_{1}, \ldots, F_{r}$ satisfying $F_{1}^{\dagger} F_{1}+\cdots+F_{r}^{\dagger} F_{r}=I_{n}$.

## Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_{n} \rightarrow M_{m}$ has the operator sum representation:

$$
\Phi(\rho)=F_{1} \rho F_{1}^{\dagger}+\cdots+F_{r} \rho F_{r}^{\dagger}
$$

for some $m \times n$ matrices $F_{1}, \ldots, F_{r}$ satisfying $F_{1}^{\dagger} F_{1}+\cdots+F_{r}^{\dagger} F_{r}=I_{n}$.

- So, one can do QIS research if one knows positive semi-definite matrices and the sum of linear maps of the form $\rho \mapsto F \rho F^{\dagger}$ !


## Quantum Channels with special properties

Let $D_{n}$ be the set of density matrices in $M_{n}$.

## Quantum Channels with special properties

Let $D_{n}$ be the set of density matrices in $M_{n}$.
Interpolation Problem
Given $\left\{\rho_{1}, \ldots, \rho_{k}\right\} \subseteq D_{n}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \subseteq D_{m}$.

## Quantum Channels with special properties

Let $D_{n}$ be the set of density matrices in $M_{n}$.
Interpolation Problem
Given $\left\{\rho_{1}, \ldots, \rho_{k}\right\} \subseteq D_{n}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \subseteq D_{m}$.
Construct a quantum operation sending $\rho_{i}$ to $\sigma_{i}$ for $i=1, \ldots, k$, if it exists.

## Quantum Channels with special properties

Let $D_{n}$ be the set of density matrices in $M_{n}$.

## Interpolation Problem

Given $\left\{\rho_{1}, \ldots, \rho_{k}\right\} \subseteq D_{n}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \subseteq D_{m}$.
Construct a quantum operation sending $\rho_{i}$ to $\sigma_{i}$ for $i=1, \ldots, k$, if it exists.

In other words, given $\rho_{1}, \ldots, \rho_{k} \in D_{n}$ and $\sigma_{1}, \ldots, \sigma_{k} \in D_{m}$, find $m \times n$ matrices $F_{1}, \ldots, F_{r}$ such that $F_{1}^{\dagger} F_{1}+\cdots+F_{r}^{\dagger} F_{r}=I_{n}$ and

$$
\sigma_{i}=F_{1} \rho_{i} F_{1}^{\dagger}+\cdots+F_{r} \rho_{i} F_{r}^{\dagger} \quad \text { for all } i=1, \ldots, k
$$

## Quantum Channels with special properties

Let $D_{n}$ be the set of density matrices in $M_{n}$.

## Interpolation Problem

Given $\left\{\rho_{1}, \ldots, \rho_{k}\right\} \subseteq D_{n}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \subseteq D_{m}$.
Construct a quantum operation sending $\rho_{i}$ to $\sigma_{i}$ for $i=1, \ldots, k$, if it exists.

In other words, given $\rho_{1}, \ldots, \rho_{k} \in D_{n}$ and $\sigma_{1}, \ldots, \sigma_{k} \in D_{m}$, find $m \times n$ matrices $F_{1}, \ldots, F_{r}$ such that $F_{1}^{\dagger} F_{1}+\cdots+F_{r}^{\dagger} F_{r}=I_{n}$ and

$$
\sigma_{i}=F_{1} \rho_{i} F_{1}^{\dagger}+\cdots+F_{r} \rho_{i} F_{r}^{\dagger} \quad \text { for all } i=1, \ldots, k
$$

So, just solve the matrix equations for the unknowns $F_{1}, \ldots, F_{r}$.

## Some results

## Theorem [Li and Y. Poon, 2011]

Suppose $\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$
\rho_{j}=\left[\begin{array}{ccc}
\rho_{j 1} & & \\
& \ddots & \\
& & \rho_{j n}
\end{array}\right] \quad \text { and } \quad \sigma_{j}=\left[\begin{array}{ccc}
\sigma_{j 1} & & \\
& \ddots & \\
& & \sigma_{j m}
\end{array}\right], \quad j=1, \ldots, k .
$$

## Some results

## Theorem [Li and Y. Poon, 2011]

Suppose $\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$
\rho_{j}=\left[\begin{array}{ccc}
\rho_{j 1} & & \\
& \ddots & \\
& & \rho_{j n}
\end{array}\right] \quad \text { and } \quad \sigma_{j}=\left[\begin{array}{ccc}
\sigma_{j 1} & & \\
& \ddots & \\
& & \sigma_{j m}
\end{array}\right], \quad j=1, \ldots, k .
$$

Then there is a (unital / trace preserving / doubly stochastic) completely positive linear map $\Phi$ such that

$$
\Phi\left(\rho_{j}\right)=\sigma_{j} \quad \text { for } j=1, \ldots, k
$$

## Some results

## Theorem [Li and Y. Poon, 2011]

Suppose $\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$
\rho_{j}=\left[\begin{array}{ccc}
\rho_{j 1} & & \\
& \ddots & \\
& & \rho_{j n}
\end{array}\right] \quad \text { and } \quad \sigma_{j}=\left[\begin{array}{ccc}
\sigma_{j 1} & & \\
& \ddots & \\
& & \sigma_{j m}
\end{array}\right], \quad j=1, \ldots, k .
$$

Then there is a (unital / trace preserving / doubly stochastic) completely positive linear map $\Phi$ such that

$$
\Phi\left(\rho_{j}\right)=\sigma_{j} \quad \text { for } j=1, \ldots, k
$$

if and only if there is an $n \times m$ nonnegative (column / row / doubly stochastic) matrix $D$ such that

$$
\left[\begin{array}{ccc}
\sigma_{11} & \cdots & \sigma_{1 m} \\
\vdots & \ddots & \vdots \\
\sigma_{k 1} & \cdots & \sigma_{k m}
\end{array}\right]=\left[\begin{array}{ccc}
\rho_{11} & \cdots & \rho_{1 n} \\
\vdots & \ddots & \vdots \\
\rho_{k 1} & \cdots & \rho_{k n}
\end{array}\right] D .
$$

## Some results

## Theorem [Li and Y. Poon, 2011]

Suppose $\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ and $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$
\rho_{j}=\left[\begin{array}{ccc}
\rho_{j 1} & & \\
& \ddots & \\
& & \rho_{j n}
\end{array}\right] \quad \text { and } \quad \sigma_{j}=\left[\begin{array}{ccc}
\sigma_{j 1} & & \\
& \ddots & \\
& & \sigma_{j m}
\end{array}\right], \quad j=1, \ldots, k .
$$

Then there is a (unital / trace preserving / doubly stochastic) completely positive linear map $\Phi$ such that

$$
\Phi\left(\rho_{j}\right)=\sigma_{j} \quad \text { for } j=1, \ldots, k
$$

if and only if there is an $n \times m$ nonnegative (column / row / doubly stochastic) matrix $D$ such that

$$
\left[\begin{array}{ccc}
\sigma_{11} & \cdots & \sigma_{1 m} \\
\vdots & \ddots & \vdots \\
\sigma_{k 1} & \cdots & \sigma_{k m}
\end{array}\right]=\left[\begin{array}{ccc}
\rho_{11} & \cdots & \rho_{1 n} \\
\vdots & \ddots & \vdots \\
\rho_{k 1} & \cdots & \rho_{k n}
\end{array}\right] D
$$

From $D$, one can construct $F_{1}, \ldots, F_{r}$ to get the desired quantum channel.

## Remarks

## Chi-Kwong Li Quantum States and Quantum Operations

## Remarks

- Finding a column stochastic, or a doubly stochastic $D$ such that

$$
\left[\sigma_{i j}\right]=\left[\rho_{i j}\right] D
$$

is a non-trivial feasibility problem in linear programming.

## Remarks

- Finding a column stochastic, or a doubly stochastic $D$ such that

$$
\left[\sigma_{i j}\right]=\left[\rho_{i j}\right] D
$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.


## Remarks

- Finding a column stochastic, or a doubly stochastic $D$ such that

$$
\left[\sigma_{i j}\right]=\left[\rho_{i j}\right] D
$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on $D$,


## Remarks

- Finding a column stochastic, or a doubly stochastic $D$ such that

$$
\left[\sigma_{i j}\right]=\left[\rho_{i j}\right] D
$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on $D$, say, construct a TPCP map with the minimum number of $F_{1}, \ldots, F_{r}$.


## Remarks

- Finding a column stochastic, or a doubly stochastic $D$ such that

$$
\left[\sigma_{i j}\right]=\left[\rho_{i j}\right] D
$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on $D$, say, construct a TPCP map with the minimum number of $F_{1}, \ldots, F_{r}$.
- The techniques in the study of nonnegative matrix equations and linear programming will be useful.


## Remarks

- Finding a column stochastic, or a doubly stochastic $D$ such that

$$
\left[\sigma_{i j}\right]=\left[\rho_{i j}\right] D
$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on $D$, say, construct a TPCP map with the minimum number of $F_{1}, \ldots, F_{r}$.
- The techniques in the study of nonnegative matrix equations and linear programming will be useful.
- The results were extended to compact operators in:
M.H. Hsu, L.W. Kuo, M.C. Tsai, Completely positive interpolations of compact, trace-class and Schatten-p class operators. J. Funct. Anal. 267 (2014), no. 4, 1205-1240.


## Results on Pure States (Rank one orthogonal projections)

A density matrix $\rho \in D_{n}$ is a pure state if it is of rank one.

## Results on Pure States (Rank one orthogonal projections)

A density matrix $\rho \in D_{n}$ is a pure state if it is of rank one.
That is $\rho=|x\rangle\langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^{n}$.

## Results on Pure States (Rank one orthogonal projections)

A density matrix $\rho \in D_{n}$ is a pure state if it is of rank one.
That is $\rho=|x\rangle\langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^{n}$.

## Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle \in \mathbb{C}^{n}$ and $\left|y_{1}\right\rangle, \ldots,\left|y_{k}\right\rangle \in \mathbb{C}^{m}$ are unit vectors. The following conditions are equivalent.

## Results on Pure States (Rank one orthogonal projections)

A density matrix $\rho \in D_{n}$ is a pure state if it is of rank one.
That is $\rho=|x\rangle\langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^{n}$.

## Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle \in \mathbb{C}^{n}$ and $\left|y_{1}\right\rangle, \ldots,\left|y_{k}\right\rangle \in \mathbb{C}^{m}$ are unit vectors. The following conditions are equivalent.
(a) There is a quantum channel $\Phi: M_{n} \rightarrow M_{m}$ such that

$$
\Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \quad \text { for } i=1, \ldots, k .
$$

## Results on Pure States (Rank one orthogonal projections)

A density matrix $\rho \in D_{n}$ is a pure state if it is of rank one.
That is $\rho=|x\rangle\langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^{n}$.

## Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle \in \mathbb{C}^{n}$ and $\left|y_{1}\right\rangle, \ldots,\left|y_{k}\right\rangle \in \mathbb{C}^{m}$ are unit vectors. The following conditions are equivalent.
(a) There is a quantum channel $\Phi: M_{n} \rightarrow M_{m}$ such that

$$
\Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \quad \text { for } i=1, \ldots, k .
$$

(b) There is a positive semidefinite matrix $C=\left(C_{i j}\right) \in M_{k}$ such that

$$
\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]=C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[C_{i j}\left\langle y_{i} \mid y_{j}\right\rangle\right]
$$

## Results on Pure States (Rank one orthogonal projections)

A density matrix $\rho \in D_{n}$ is a pure state if it is of rank one.
That is $\rho=|x\rangle\langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^{n}$.

## Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle \in \mathbb{C}^{n}$ and $\left|y_{1}\right\rangle, \ldots,\left|y_{k}\right\rangle \in \mathbb{C}^{m}$ are unit vectors. The following conditions are equivalent.
(a) There is a quantum channel $\Phi: M_{n} \rightarrow M_{m}$ such that

$$
\Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \quad \text { for } i=1, \ldots, k .
$$

(b) There is a positive semidefinite matrix $C=\left(C_{i j}\right) \in M_{k}$ such that

$$
\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]=C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[C_{i j}\left\langle y_{i} \mid y_{j}\right\rangle\right]
$$

One can use the matrix $C$ to construct the matrices $F_{1}, \ldots, F_{r}$ in the operator sum representation of the TPCP map.

## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one,


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one, i.e., $C$ is a correlation matrix.


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one, i.e., $C$ is a correlation matrix.
- Finding the correlation matrix $C$ could be challenging.


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one, i.e., $C$ is a correlation matrix.
- Finding the correlation matrix $C$ could be challenging.
- If $\left\langle y_{i} \mid y_{j}\right\rangle \neq 0$ for all $(i, j)$, then the problem is easy because only one candidate for $C$, namely, $C=\left[\frac{\left\langle x_{i} \mid x_{j}\right\rangle}{\left\langle y_{i} \mid y_{j}\right\rangle}\right]$.


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one, i.e., $C$ is a correlation matrix.
- Finding the correlation matrix $C$ could be challenging.
- If $\left\langle y_{i} \mid y_{j}\right\rangle \neq 0$ for all $(i, j)$, then the problem is easy because only one candidate for $C$, namely, $C=\left[\frac{\left\langle x_{i} \mid x_{j}\right\rangle}{\left\langle y_{i} \mid y_{j}\right\rangle}\right]$.
- If $\left\langle y_{i} \mid y_{j}\right\rangle=0$ for some $(i, j)$, then $\left\langle x_{i} \mid x_{j}\right\rangle$ must also be zero if $C$ exists.


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one, i.e., $C$ is a correlation matrix.
- Finding the correlation matrix $C$ could be challenging.
- If $\left\langle y_{i} \mid y_{j}\right\rangle \neq 0$ for all $(i, j)$, then the problem is easy because only one candidate for $C$, namely, $C=\left[\frac{\left\langle x_{i} \mid x_{j}\right\rangle}{\left\langle y_{i} \mid y_{j}\right\rangle}\right]$.
- If $\left\langle y_{i} \mid y_{j}\right\rangle=0$ for some $(i, j)$, then $\left\langle x_{i} \mid x_{j}\right\rangle$ must also be zero if $C$ exists. However, it is difficult to determine what $c_{i j}$ should/could be in the positions when $\left\langle y_{i} \mid y_{j}\right\rangle=0=\left\langle x_{i} \mid x_{j}\right\rangle$ to get a correlation matrix $C$.


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one, i.e., $C$ is a correlation matrix.
- Finding the correlation matrix $C$ could be challenging.
- If $\left\langle y_{i} \mid y_{j}\right\rangle \neq 0$ for all $(i, j)$, then the problem is easy because only one candidate for $C$, namely, $C=\left[\frac{\left\langle x_{i} \mid x_{j}\right\rangle}{\left\langle y_{i} \mid y_{j}\right\rangle}\right]$.
- If $\left\langle y_{i} \mid y_{j}\right\rangle=0$ for some $(i, j)$, then $\left\langle x_{i} \mid x_{j}\right\rangle$ must also be zero if $C$ exists. However, it is difficult to determine what $c_{i j}$ should/could be in the positions when $\left\langle y_{i} \mid y_{j}\right\rangle=0=\left\langle x_{i} \mid x_{j}\right\rangle$ to get a correlation matrix $C$.
- This is known as the completion problem for psd matrices in matrix theory research.


## Remarks

- Note that $\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ and $\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]$ have all diagonal entries equal to one.
- So, the psd matrix $C$ (if exists) satisfying $C \circ\left[\left\langle y_{i} \mid y_{j}\right\rangle\right]=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right]$ also has diagonal entries equal to one, i.e., $C$ is a correlation matrix.
- Finding the correlation matrix $C$ could be challenging.
- If $\left\langle y_{i} \mid y_{j}\right\rangle \neq 0$ for all $(i, j)$, then the problem is easy because only one candidate for $C$, namely, $C=\left[\frac{\left\langle x_{i} \mid x_{j}\right\rangle}{\left\langle y_{i} \mid y_{j}\right\rangle}\right]$.
- If $\left\langle y_{i} \mid y_{j}\right\rangle=0$ for some $(i, j)$, then $\left\langle x_{i} \mid x_{j}\right\rangle$ must also be zero if $C$ exists. However, it is difficult to determine what $c_{i j}$ should/could be in the positions when $\left\langle y_{i} \mid y_{j}\right\rangle=0=\left\langle x_{i} \mid x_{j}\right\rangle$ to get a correlation matrix $C$.
- This is known as the completion problem for psd matrices in matrix theory research.
- One can use positive semi-definite programming method to solve the problem numerically.


## A general result

## Theorem [Huang, Li, E.Poon, Sze, 2012]

Suppose $\rho_{1}, \ldots, \rho_{k} \in M_{n}$ and $\sigma_{1}, \ldots, \sigma_{k} \in M_{m}$ are density matrices with spectral decomposition:

$$
\rho_{i}=X_{i} D_{i}^{2} X_{i}^{\dagger} \quad \text { and } \quad \sigma_{i}=Y_{i} \tilde{D}_{i}^{2} Y_{i}^{\dagger}, \quad i=1, \ldots, k,
$$

for some diagonal matrices $D_{i} \in M_{r_{i}}, \tilde{D}_{i} \in M_{s_{i}}$ with positive diagonal entries.

## A general result

## Theorem [Huang, Li, E.Poon, Sze, 2012]

Suppose $\rho_{1}, \ldots, \rho_{k} \in M_{n}$ and $\sigma_{1}, \ldots, \sigma_{k} \in M_{m}$ are density matrices with spectral decomposition:

$$
\rho_{i}=X_{i} D_{i}^{2} X_{i}^{\dagger} \quad \text { and } \quad \sigma_{i}=Y_{i} \tilde{D}_{i}^{2} Y_{i}^{\dagger}, \quad i=1, \ldots, k,
$$

for some diagonal matrices $D_{i} \in M_{r_{i}}, \tilde{D}_{i} \in M_{s_{i}}$ with positive diagonal entries.
There is a TPCP map $\Phi: M_{n} \rightarrow M_{m}$ such that $\Phi\left(\rho_{i}\right)=\sigma_{i}$ for all $i$

## A general result

## Theorem [Huang, Li, E.Poon, Sze, 2012]

Suppose $\rho_{1}, \ldots, \rho_{k} \in M_{n}$ and $\sigma_{1}, \ldots, \sigma_{k} \in M_{m}$ are density matrices with spectral decomposition:

$$
\rho_{i}=X_{i} D_{i}^{2} X_{i}^{\dagger} \quad \text { and } \quad \sigma_{i}=Y_{i} \tilde{D}_{i}^{2} Y_{i}^{\dagger}, \quad i=1, \ldots, k
$$

for some diagonal matrices $D_{i} \in M_{r_{i}}, \tilde{D}_{i} \in M_{s_{i}}$ with positive diagonal entries.
There is a TPCP map $\Phi: M_{n} \rightarrow M_{m}$ such that $\Phi\left(\rho_{i}\right)=\sigma_{i}$ for all $i$ if and only if:

For each $i=1, \ldots, k$ and $j=1, \ldots, r_{i}$, there are $s_{i} \times s$ matrices $V_{i j}$ such that

$$
\left[V_{i 1} \cdots V_{r_{i}}\right]\left[V_{i 1} \cdots V_{r_{i}}\right]^{\dagger}=I_{s_{i}}
$$

and

$$
\left[D_{i} X_{i}^{\dagger} X_{j} D_{j}\right]=\left[\operatorname{tr}\left(V_{i p}^{\dagger} \tilde{D}_{i}^{\dagger} Y_{i}^{\dagger} Y_{j} \tilde{D}_{j} V_{j q}\right)\right]_{1 \leq p \leq r_{i}, 1 \leq q \leq r_{j}}
$$

## Remarks

- Computationally, the result is impractical.


## Remarks

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:


## Remarks

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$
\Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n ;
$$

## Remarks

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$
\begin{aligned}
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n ; \\
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\sigma_{i} \text { for } i=1, \ldots, n
\end{aligned}
$$

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$
\begin{aligned}
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n \\
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\sigma_{i} \text { for } i=1, \ldots, n \\
& \Phi\left(\rho_{i}\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n
\end{aligned}
$$

## Remarks

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$
\begin{aligned}
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n \\
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\sigma_{i} \text { for } i=1, \ldots, n \\
& \Phi\left(\rho_{i}\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n
\end{aligned}
$$

Question Can we find better ways to determine whether the desired quantum operation exists?

## Remarks

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$
\begin{aligned}
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n ; \\
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\sigma_{i} \text { for } i=1, \ldots, n ; \\
& \Phi\left(\rho_{i}\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n .
\end{aligned}
$$

Question Can we find better ways to determine whether the desired quantum operation exists?

Answer One can use Semi-Definite Programming (SDP) to solve it.

## Remarks

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$
\begin{aligned}
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n ; \\
& \Phi\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)=\sigma_{i} \text { for } i=1, \ldots, n ; \\
& \Phi\left(\rho_{i}\right)=\left|y_{i}\right\rangle\left\langle y_{i}\right| \text { for } i=1, \ldots, n .
\end{aligned}
$$

Question Can we find better ways to determine whether the desired quantum operation exists?

Answer One can use Semi-Definite Programming (SDP) to solve it.
But, SDP is inefficient even for moderate size problems.

## Alternating Projection Methods

In my 2014 IQC visit, we (Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz) studied the problem using alternating projection methods on two closed convex sets $C$ and $D$.

## Alternating Projection Methods

In my 2014 IQC visit, we (Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz) studied the problem using alternating projection methods on two closed convex sets $C$ and $D$.


Figure 1: First few iterations of alternating projection algorithm. Both sequences are converging to the point $x^{*} \in C \cap D$.


Figure 2: First few iterations of alternating projection algorithm, for a case in which $C \cap D=\emptyset$. The sequence $x_{k}$ is converging to $x^{*} \in C$, and the sequence $y_{k}$ is converging to $y^{*} \in D$, where $\left\|x^{*}-y^{*}\right\|_{2}=\operatorname{dist}(C, D)$.

## Set up of our problem

- By a result of Choi, a linear map $\Phi: M_{n} \rightarrow M_{m}$ is completely positive if and only if


## Set up of our problem

- By a result of Choi, a linear map $\Phi: M_{n} \rightarrow M_{m}$ is completely positive if and only if the block matrix

$$
C(\Phi)=\left[\Phi\left(E_{i j}\right)\right]_{1 \leq i, j \leq n} \in M_{n}\left(M_{m}\right)=M_{n m}
$$

is positive semi-definite, where $E_{i j}=\left|e_{i}\right\rangle\left\langle e_{j}\right|$ is the standard matrix unit.

## Set up of our problem

- By a result of Choi, a linear map $\Phi: M_{n} \rightarrow M_{m}$ is completely positive if and only if the block matrix

$$
C(\Phi)=\left[\Phi\left(E_{i j}\right)\right]_{1 \leq i, j \leq n} \in M_{n}\left(M_{m}\right)=M_{n m}
$$

is positive semi-definite, where $E_{i j}=\left|e_{i}\right\rangle\left\langle e_{j}\right|$ is the standard matrix unit.

- Thus, one may construct a CP map by constructing a positive semi-definite matrix $P=\left[P_{i j}\right] \in M_{n}\left(M_{m}\right)$.


## Set up of our problem

- By a result of Choi, a linear map $\Phi: M_{n} \rightarrow M_{m}$ is completely positive if and only if the block matrix

$$
C(\Phi)=\left[\Phi\left(E_{i j}\right)\right]_{1 \leq i, j \leq n} \in M_{n}\left(M_{m}\right)=M_{n m}
$$

is positive semi-definite, where $E_{i j}=\left|e_{i}\right\rangle\left\langle e_{j}\right|$ is the standard matrix unit.

- Thus, one may construct a CP map by constructing a positive semi-definite matrix $P=\left[P_{i j}\right] \in M_{n}\left(M_{m}\right)$.
- The trace preserving condition translates to

$$
\begin{equation*}
\operatorname{tr} P_{i j}=\delta_{i j} \tag{1}
\end{equation*}
$$

## Set up of our problem

- By a result of Choi, a linear map $\Phi: M_{n} \rightarrow M_{m}$ is completely positive if and only if the block matrix

$$
C(\Phi)=\left[\Phi\left(E_{i j}\right)\right]_{1 \leq i, j \leq n} \in M_{n}\left(M_{m}\right)=M_{n m}
$$

is positive semi-definite, where $E_{i j}=\left|e_{i}\right\rangle\left\langle e_{j}\right|$ is the standard matrix unit.

- Thus, one may construct a CP map by constructing a positive semi-definite matrix $P=\left[P_{i j}\right] \in M_{n}\left(M_{m}\right)$.
- The trace preserving condition translates to

$$
\begin{equation*}
\operatorname{tr} P_{i j}=\delta_{i j} \tag{1}
\end{equation*}
$$

- Evidently, $\Phi(\rho)=\sigma$ if and only if $\sum_{r, s} \rho_{r s} \Phi\left(E_{r s}\right)=\sum_{r, s} \rho_{r s} P_{r s}=\sigma$.
- By a result of Choi, a linear map $\Phi: M_{n} \rightarrow M_{m}$ is completely positive if and only if the block matrix

$$
C(\Phi)=\left[\Phi\left(E_{i j}\right)\right]_{1 \leq i, j \leq n} \in M_{n}\left(M_{m}\right)=M_{n m}
$$

is positive semi-definite, where $E_{i j}=\left|e_{i}\right\rangle\left\langle e_{j}\right|$ is the standard matrix unit.

- Thus, one may construct a CP map by constructing a positive semi-definite matrix $P=\left[P_{i j}\right] \in M_{n}\left(M_{m}\right)$.
- The trace preserving condition translates to

$$
\begin{equation*}
\operatorname{tr} P_{i j}=\delta_{i j} \tag{1}
\end{equation*}
$$

- Evidently, $\Phi(\rho)=\sigma$ if and only if $\sum_{r, s} \rho_{r s} \Phi\left(E_{r s}\right)=\sum_{r, s} \rho_{r s} P_{r s}=\sigma$.
- The requirement that $\Phi\left(\rho_{j}\right)=\sigma_{j}$ for $j=1, \ldots, k$ becomes:

$$
\begin{equation*}
\sum_{r, s}\left(\rho_{j}\right)_{r s} P_{r s}=\sigma_{j} \quad j=1, \ldots, k \tag{2}
\end{equation*}
$$

- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{D}$ be the set of Hermitian matrices [ $P_{i j}$ ] in $M_{n}\left(M_{m}\right)$ satisfying the linear constraints (equations) (1) and (2).

- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{D}$ be the set of Hermitian matrices [ $P_{i j}$ ] in $M_{n}\left(M_{m}\right)$ satisfying the linear constraints (equations) (1) and (2).

- Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.
- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{D}$ be the set of Hermitian matrices [ $P_{i j}$ ] in $M_{n}\left(M_{m}\right)$ satisfying the linear constraints (equations) (1) and (2).

- Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.


## Algorithm [Drusvyatskiy,Li,Pelejo,Voronin,Wolkowicz,2015]

- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{D}$ be the set of Hermitian matrices [ $P_{i j}$ ] in $M_{n}\left(M_{m}\right)$ satisfying the linear constraints (equations) (1) and (2).

- Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.


## Algorithm [Drusvyatskiy,Li,Pelejo,Voronin,Wolkowicz,2015]

- Step 1. Choose $P_{0}=\alpha I_{m n}$ for $\alpha>0$.
- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{D}$ be the set of Hermitian matrices [ $P_{i j}$ ] in $M_{n}\left(M_{m}\right)$ satisfying the linear constraints (equations) (1) and (2).

- Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.


## Algorithm [Drusvyatskiy,Li,Pelejo,Voronin,Wolkowicz,2015]

- Step 1. Choose $P_{0}=\alpha I_{m n}$ for $\alpha>0$.
- Step 2. If $P_{2 k}$ in $\mathbf{C}$ is constructed, project $P_{2 k}$ to the set $\mathbf{D}$ to obtain $P_{2 k+1}$ by the least square method. Go to Step 3.
- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{D}$ be the set of Hermitian matrices [ $P_{i j}$ ] in $M_{n}\left(M_{m}\right)$ satisfying the linear constraints (equations) (1) and (2).

- Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.


## Algorithm [Drusvyatskiy,Li,Pelejo,Voronin,Wolkowicz,2015]

- Step 1. Choose $P_{0}=\alpha I_{m n}$ for $\alpha>0$.
- Step 2. If $P_{2 k}$ in $\mathbf{C}$ is constructed, project $P_{2 k}$ to the set $\mathbf{D}$ to obtain $P_{2 k+1}$ by the least square method. Go to Step 3.
- Step 3. Suppose $P_{2 k+1}$ in $\mathbf{D}$ is constructed with spectral decomposition

$$
P_{2 k+1}=\sum_{j=1}^{m n} \lambda_{j}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right| .
$$

Construct $P_{2 k+2}=\sum_{\lambda_{j}>0} \lambda_{j}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right|$. Go to Step 2.

- Let $\mathbf{C}$ be the cone of positive semi-definite matrices $\left[P_{i j}\right]$ in $M_{n}\left(M_{m}\right)$.
- Let $\mathbf{D}$ be the set of Hermitian matrices [ $P_{i j}$ ] in $M_{n}\left(M_{m}\right)$ satisfying the linear constraints (equations) (1) and (2).

- Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.


## Algorithm [Drusvyatskiy,Li,Pelejo,Voronin, Wolkowicz, 2015]

- Step 1. Choose $P_{0}=\alpha I_{m n}$ for $\alpha>0$.
- Step 2. If $P_{2 k}$ in $\mathbf{C}$ is constructed, project $P_{2 k}$ to the set $\mathbf{D}$ to obtain $P_{2 k+1}$ by the least square method. Go to Step 3.
- Step 3. Suppose $P_{2 k+1}$ in $\mathbf{D}$ is constructed with spectral decomposition

$$
P_{2 k+1}=\sum_{j=1}^{m n} \lambda_{j}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right| .
$$

Construct $P_{2 k+2}=\sum_{\lambda_{j}>0} \lambda_{j}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right|$. Go to Step 2.

Dmitriy Drusvyatskiy, Chi-Kwong Li, Diane Pelejo, Yuen-Lam Voronin, Henry Wolkowicz, Projection Methods for Quantum Channel Construction, Quantum Inf Process (2015) 14:30753096 DOI 10.1007/s11128-015-1024-y.

## Remarks

- Matlab was used to implement the algorithm that could handle 20 pairs of matrices $\left(\rho_{j}, \sigma_{j}\right)$ of sizes over 100 .


## Remarks

- Matlab was used to implement the algorithm that could handle 20 pairs of matrices $\left(\rho_{j}, \sigma_{j}\right)$ of sizes over 100 .
- We can impose other requirements.
- Matlab was used to implement the algorithm that could handle 20 pairs of matrices $\left(\rho_{j}, \sigma_{j}\right)$ of sizes over 100 .
- We can impose other requirements.
* Find $\left[P_{i j}\right]$ with the maximum/minimum (Choi) rank $r$ so that satisfying our requirement, i.e. find the minimum $r$ such that

$$
\Phi(\rho)=\sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger}
$$

## Remarks

- Matlab was used to implement the algorithm that could handle 20 pairs of matrices $\left(\rho_{j}, \sigma_{j}\right)$ of sizes over 100 .
- We can impose other requirements.
* Find $\left[P_{i j}\right]$ with the maximum/minimum (Choi) rank $r$ so that satisfying our requirement, i.e. find the minimum $r$ such that

$$
\Phi(\rho)=\sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger}
$$

- We also use the Douglas-Rachford Alternating Projection method.


## More restriction on quantum channels

Not all quantum channels are equal! Some are more preferred.

## More restriction on quantum channels

Not all quantum channels are equal! Some are more preferred.

- A quantum channel $\Phi: M_{n} \rightarrow M_{m}$ is "unital" if $\Phi\left(I_{n} / n\right)=I_{m} / m$.


## More restriction on quantum channels

Not all quantum channels are equal! Some are more preferred.

- A quantum channel $\Phi: M_{n} \rightarrow M_{m}$ is "unital" if $\Phi\left(I_{n} / n\right)=I_{m} / m$.
- A quantum channel $\Phi: M_{n} \rightarrow M_{n}$ is mixed (random) unitary if

$$
\Phi(\rho)=p_{1} U_{1} \rho U_{1}^{\dagger}+\cdots+p_{k} U_{k} \rho U_{k}^{\dagger}
$$

for some probability vector ( $p_{1}, \ldots, p_{k}$ ) and unitary matrices $U_{1}, \ldots, U_{k} \in M_{n}$.

## More restriction on quantum channels

Not all quantum channels are equal! Some are more preferred.

- A quantum channel $\Phi: M_{n} \rightarrow M_{m}$ is "unital" if $\Phi\left(I_{n} / n\right)=I_{m} / m$.
- A quantum channel $\Phi: M_{n} \rightarrow M_{n}$ is mixed (random) unitary if

$$
\Phi(\rho)=p_{1} U_{1} \rho U_{1}^{\dagger}+\cdots+p_{k} U_{k} \rho U_{k}^{\dagger}
$$

for some probability vector $\left(p_{1}, \ldots, p_{k}\right)$ and unitary matrices $U_{1}, \ldots, U_{k} \in M_{n}$.

- A quantum channel $\Phi: M_{n} \rightarrow M_{n}$ is unitary if there is a unitary $U$ such that

$$
\Phi(\rho)=U \rho U^{\dagger} \quad \text { for all } \rho \in M_{n}
$$

## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$.


## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$. In construction, just add the constraint $P_{11}+\cdots+P_{n n}=I_{n}$ in the construction of $C(\Phi)=\left(P_{i j}\right)$.


## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$. In construction, just add the constraint $P_{11}+\cdots+P_{n n}=I_{n}$ in the construction of $C(\Phi)=\left(P_{i j}\right)$.
- Detecting a mixed unitary channel is not so easy.


## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$. In construction, just add the constraint $P_{11}+\cdots+P_{n n}=I_{n}$ in the construction of $C(\Phi)=\left(P_{i j}\right)$.
- Detecting a mixed unitary channel is not so easy.
- We need to write $C(\Phi)$ as a convex sum of $C\left(\Psi_{1}\right), \ldots, C\left(\Psi_{r}\right)$ such that $\Psi_{1}, \ldots, \Psi_{r}$ are unitary channels.


## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$. In construction, just add the constraint $P_{11}+\cdots+P_{n n}=I_{n}$ in the construction of $C(\Phi)=\left(P_{i j}\right)$.
- Detecting a mixed unitary channel is not so easy.
- We need to write $C(\Phi)$ as a convex sum of $C\left(\Psi_{1}\right), \ldots, C\left(\Psi_{r}\right)$ such that $\Psi_{1}, \ldots, \Psi_{r}$ are unitary channels.
- Equivalently, $C\left(\Psi_{j}\right)=\mathbf{v}_{j} \mathbf{v}_{j}^{\dagger}$ where $\mathbf{v}_{j}^{\dagger}=\left[v_{j 1}^{\dagger}, \ldots, v_{j n}^{\dagger}\right]$ so that $V_{j}=\left[v_{j 1} \cdots v_{j n}\right]$ is unitary.


## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$. In construction, just add the constraint $P_{11}+\cdots+P_{n n}=I_{n}$ in the construction of $C(\Phi)=\left(P_{i j}\right)$.
- Detecting a mixed unitary channel is not so easy.
- We need to write $C(\Phi)$ as a convex sum of $C\left(\Psi_{1}\right), \ldots, C\left(\Psi_{r}\right)$ such that $\Psi_{1}, \ldots, \Psi_{r}$ are unitary channels.
- Equivalently, $C\left(\Psi_{j}\right)=\mathbf{v}_{j} \mathbf{v}_{j}^{\dagger}$ where $\mathbf{v}_{j}^{\dagger}=\left[v_{j 1}^{\dagger}, \ldots, v_{j n}^{\dagger}\right]$ so that $V_{j}=\left[v_{j 1} \cdots v_{j n}\right]$ is unitary.
- Let $C(\Phi)=R R^{\dagger}$, where $R$ is $n^{2} \times k$, where $k$ is the rank of $C(\Phi)$, which is known as the Choi rank of $\Phi$.


## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$. In construction, just add the constraint $P_{11}+\cdots+P_{n n}=I_{n}$ in the construction of $C(\Phi)=\left(P_{i j}\right)$.
- Detecting a mixed unitary channel is not so easy.
- We need to write $C(\Phi)$ as a convex sum of $C\left(\Psi_{1}\right), \ldots, C\left(\Psi_{r}\right)$ such that $\Psi_{1}, \ldots, \Psi_{r}$ are unitary channels.
- Equivalently, $C\left(\Psi_{j}\right)=\mathbf{v}_{j} \mathbf{v}_{j}^{\dagger}$ where $\mathbf{v}_{j}^{\dagger}=\left[v_{j 1}^{\dagger}, \ldots, v_{j n}^{\dagger}\right]$ so that $V_{j}=\left[v_{j 1} \cdots v_{j n}\right]$ is unitary.
- Let $C(\Phi)=R R^{\dagger}$, where $R$ is $n^{2} \times k$, where $k$ is the rank of $C(\Phi)$, which is known as the Choi rank of $\Phi$.
- Find a $k \times r$ matrix $T=\left[T_{1} \cdots T_{r}\right]$ such that $T T^{\dagger}=I_{k}$ so that $P=R T T^{\dagger} R^{\dagger}=V V^{\dagger}$ with $V=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{r}\right]$ satisfying the above condition.


## Detecting mixed unitary channel

- Detecting a unital channel is easy. Just check $\Phi(I / n)=I / n$. In construction, just add the constraint $P_{11}+\cdots+P_{n n}=I_{n}$ in the construction of $C(\Phi)=\left(P_{i j}\right)$.
- Detecting a mixed unitary channel is not so easy.
- We need to write $C(\Phi)$ as a convex sum of $C\left(\Psi_{1}\right), \ldots, C\left(\Psi_{r}\right)$ such that $\Psi_{1}, \ldots, \Psi_{r}$ are unitary channels.
- Equivalently, $C\left(\Psi_{j}\right)=\mathbf{v}_{j} \mathbf{v}_{j}^{\dagger}$ where $\mathbf{v}_{j}^{\dagger}=\left[v_{j 1}^{\dagger}, \ldots, v_{j n}^{\dagger}\right]$ so that $V_{j}=\left[v_{j 1} \cdots v_{j n}\right]$ is unitary.
- Let $C(\Phi)=R R^{\dagger}$, where $R$ is $n^{2} \times k$, where $k$ is the rank of $C(\Phi)$, which is known as the Choi rank of $\Phi$.
- Find a $k \times r$ matrix $T=\left[T_{1} \cdots T_{r}\right]$ such that $T T^{\dagger}=I_{k}$ so that $P=R T T^{\dagger} R^{\dagger}=V V^{\dagger}$ with $V=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{r}\right]$ satisfying the above condition.
- By the result of [Leung, Li, Poon, Watrous, 2010+],

$$
r \leq k^{2}-3
$$

## An algorithm

Let $C(\Phi)=\left(P_{i j}\right) \in M_{n}\left(M_{n}\right)$ be the Choi matrix of a (unital) channel.
Note: $P$ is positive semidefinite, $\operatorname{tr}\left(P_{i j}\right)=\delta_{i j}, P_{11}+\cdots+P_{n n}=I_{n}$.

## An algorithm

Let $C(\Phi)=\left(P_{i j}\right) \in M_{n}\left(M_{n}\right)$ be the Choi matrix of a (unital) channel.
Note: $P$ is positive semidefinite, $\operatorname{tr}\left(P_{i j}\right)=\delta_{i j}, P_{11}+\cdots+P_{n n}=I_{n}$.
Step 1. Write $P=R R^{\dagger}$, where $R$ is $n^{2} \times k$ and $k$ is the rank of $P$.

## An algorithm

Let $C(\Phi)=\left(P_{i j}\right) \in M_{n}\left(M_{n}\right)$ be the Choi matrix of a (unital) channel. Note: $P$ is positive semidefinite, $\operatorname{tr}\left(P_{i j}\right)=\delta_{i j}, P_{11}+\cdots+P_{n n}=I_{n}$.

Step 1. Write $P=R R^{\dagger}$, where $R$ is $n^{2} \times k$ and $k$ is the rank of $P$.
Step 2. Let $\mathcal{B}=\left\{H_{1}, \ldots, H_{n^{2}-1}\right\}$ be a basis for the real linear space of trace zero Hermitian matrices in $M_{n}$, and let

$$
K_{j}=V^{\dagger}\left(I \otimes H_{j}\right) V \in M_{r}, \quad j=1, \ldots, N=n^{2}-1 .
$$

## An algorithm

Let $C(\Phi)=\left(P_{i j}\right) \in M_{n}\left(M_{n}\right)$ be the Choi matrix of a (unital) channel. Note: $P$ is positive semidefinite, $\operatorname{tr}\left(P_{i j}\right)=\delta_{i j}, P_{11}+\cdots+P_{n n}=I_{n}$.

Step 1. Write $P=R R^{\dagger}$, where $R$ is $n^{2} \times k$ and $k$ is the rank of $P$.
Step 2. Let $\mathcal{B}=\left\{H_{1}, \ldots, H_{n^{2}-1}\right\}$ be a basis for the real linear space of trace zero Hermitian matrices in $M_{n}$, and let

$$
K_{j}=V^{\dagger}\left(I \otimes H_{j}\right) V \in M_{r}, \quad j=1, \ldots, N=n^{2}-1
$$

Step 3. Find an $k \times r$ matrix $T$ (with smallest $r$ if possible) such that $T T^{\dagger}=I_{k}$ and $T^{\dagger} K_{j} T \in M_{r}$ has zero diagonal entries for $j=1, \ldots, \ell$.

## An algorithm

Let $C(\Phi)=\left(P_{i j}\right) \in M_{n}\left(M_{n}\right)$ be the Choi matrix of a (unital) channel. Note: $P$ is positive semidefinite, $\operatorname{tr}\left(P_{i j}\right)=\delta_{i j}, P_{11}+\cdots+P_{n n}=I_{n}$.

Step 1. Write $P=R R^{\dagger}$, where $R$ is $n^{2} \times k$ and $k$ is the rank of $P$.
Step 2. Let $\mathcal{B}=\left\{H_{1}, \ldots, H_{n^{2}-1}\right\}$ be a basis for the real linear space of trace zero Hermitian matrices in $M_{n}$, and let

$$
K_{j}=V^{\dagger}\left(I \otimes H_{j}\right) V \in M_{r}, \quad j=1, \ldots, N=n^{2}-1
$$

Step 3. Find an $k \times r$ matrix $T$ (with smallest $r$ if possible) such that $T T^{\dagger}=I_{k}$ and $T^{\dagger} K_{j} T \in M_{r}$ has zero diagonal entries for $j=1, \ldots, \ell$.

If such a $T$ exists, then $\Phi$ is mixed unitary.

## Additional problems

- Check whether the Werner-Holevo channel $\Phi: M_{n} \rightarrow M_{n}$ defined by

$$
\Phi(\rho)=\frac{1}{n+1}\left((\operatorname{tr} \rho) I_{n}+\rho^{t}\right)
$$

can be written as a mix (the average) of $N=n(n+1) / 2$ unitary channels.

## Additional problems

- Check whether the Werner-Holevo channel $\Phi: M_{n} \rightarrow M_{n}$ defined by

$$
\Phi(\rho)=\frac{1}{n+1}\left((\operatorname{tr} \rho) I_{n}+\rho^{t}\right)
$$

can be written as a mix (the average) of $N=n(n+1) / 2$ unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_{1}, \ldots, U_{N} \in M_{n}$ such that $\operatorname{tr}\left(U_{i}^{\dagger} U_{j}\right)=0$ for all $i \neq j$.


## Additional problems

- Check whether the Werner-Holevo channel $\Phi: M_{n} \rightarrow M_{n}$ defined by

$$
\Phi(\rho)=\frac{1}{n+1}\left((\operatorname{tr} \rho) I_{n}+\rho^{t}\right)
$$

can be written as a mix (the average) of $N=n(n+1) / 2$ unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_{1}, \ldots, U_{N} \in M_{n}$ such that $\operatorname{tr}\left(U_{i}^{\dagger} U_{j}\right)=0$ for all $i \neq j$.
- If exists, the set $\left\{U_{1}, \ldots, U_{N}\right\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in $M_{n}$.


## Additional problems

- Check whether the Werner-Holevo channel $\Phi: M_{n} \rightarrow M_{n}$ defined by

$$
\Phi(\rho)=\frac{1}{n+1}\left((\operatorname{tr} \rho) I_{n}+\rho^{t}\right)
$$

can be written as a mix (the average) of $N=n(n+1) / 2$ unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_{1}, \ldots, U_{N} \in M_{n}$ such that $\operatorname{tr}\left(U_{i}^{\dagger} U_{j}\right)=0$ for all $i \neq j$.
- If exists, the set $\left\{U_{1}, \ldots, U_{N}\right\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in $M_{n}$.
- Only confirm for even $n$ and $n=3,5$. Other cases are open.


## Additional problems

- Check whether the Werner-Holevo channel $\Phi: M_{n} \rightarrow M_{n}$ defined by

$$
\Phi(\rho)=\frac{1}{n+1}\left((\operatorname{tr} \rho) I_{n}+\rho^{t}\right)
$$

can be written as a mix (the average) of $N=n(n+1) / 2$ unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_{1}, \ldots, U_{N} \in M_{n}$ such that $\operatorname{tr}\left(U_{i}^{\dagger} U_{j}\right)=0$ for all $i \neq j$.
- If exists, the set $\left\{U_{1}, \ldots, U_{N}\right\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in $M_{n}$.
- Only confirm for even $n$ and $n=3,5$. Other cases are open.
- Also, we are using projection methods to find quantum states and quantum channels with special properties such as:
low rank, extreme entropy, having prescribed reduced states, extreme channel capacity, extreme channel complexity, etc.


## Additional problems

- Check whether the Werner-Holevo channel $\Phi: M_{n} \rightarrow M_{n}$ defined by

$$
\Phi(\rho)=\frac{1}{n+1}\left((\operatorname{tr} \rho) I_{n}+\rho^{t}\right)
$$

can be written as a mix (the average) of $N=n(n+1) / 2$ unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_{1}, \ldots, U_{N} \in M_{n}$ such that $\operatorname{tr}\left(U_{i}^{\dagger} U_{j}\right)=0$ for all $i \neq j$.
- If exists, the set $\left\{U_{1}, \ldots, U_{N}\right\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in $M_{n}$.
- Only confirm for even $n$ and $n=3,5$. Other cases are open.
- Also, we are using projection methods to find quantum states and quantum channels with special properties such as:
low rank, extreme entropy, having prescribed reduced states, extreme channel capacity, extreme channel complexity, etc.

Hope that to tell you more next time.

## Additional problems

- Check whether the Werner-Holevo channel $\Phi: M_{n} \rightarrow M_{n}$ defined by

$$
\Phi(\rho)=\frac{1}{n+1}\left((\operatorname{tr} \rho) I_{n}+\rho^{t}\right)
$$

can be written as a mix (the average) of $N=n(n+1) / 2$ unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_{1}, \ldots, U_{N} \in M_{n}$ such that $\operatorname{tr}\left(U_{i}^{\dagger} U_{j}\right)=0$ for all $i \neq j$.
- If exists, the set $\left\{U_{1}, \ldots, U_{N}\right\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in $M_{n}$.
- Only confirm for even $n$ and $n=3,5$. Other cases are open.
- Also, we are using projection methods to find quantum states and quantum channels with special properties such as:
low rank, extreme entropy, having prescribed reduced states, extreme channel capacity, extreme channel complexity, etc.

Hope that to tell you more next time.

Thank you for your attention!

