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A quantum computing model

−→ Quantum Computing Unit
Optical lattices, NMR, Anyons −→

Quantum bit (Qubit)

Design a quantum algorithm to use quantum properties to get useful
information for a given problem.
Choose a suitable quantum system to build the hardware.
Prepare the initial (entangled) quantum states.
Prepare a suitable environment for the quantum system to evolve
according to quantum mechanical rules.
Apply suitable measurement to extract useful information.
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Mathematical framework

Mathematically, quantum states are represented by density matrices,

that is, positive semi-definite matrices with trace one.

Quantum operations (also known as quantum channels) are
trace preserving completely positive linear (TPCP) maps.

By a result of Choi (and also Kraus), each TPCP map Φ : Mn → Mm has
the operator sum representation:

Φ(ρ) = F1ρF †1 + · · ·+ FrρF †r

for some m × n matrices F1, . . . ,Fr satisfying F †1 F1 + · · ·+ F †r Fr = In.

So, one can do QIS research if one knows positive semi-definite matrices
and the sum of linear maps of the form ρ 7→ FρF †!
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Quantum Channels with special properties

Let Dn be the set of density matrices in Mn.

Interpolation Problem
Given {ρ1, . . . , ρk} ⊆ Dn and {σ1, . . . , σk} ⊆ Dm.

Construct a quantum operation sending ρi to σi for i = 1, . . . , k, if it exists.

In other words, given ρ1, . . . , ρk ∈ Dn and σ1, . . . , σk ∈ Dm, find m× n matrices
F1, . . . ,Fr such that F †1 F1 + · · ·+ F †r Fr = In and

σi = F1ρi F †1 + · · ·+ Frρi F †r for all i = 1, . . . , k.

So, just solve the matrix equations for the unknowns F1, . . . ,Fr .
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Some results

Theorem [Li and Y. Poon, 2011]
Suppose {ρ1, . . . , ρk} and {σ1, . . . , σk} are commuting families. Then with a
suitable choice of orthonormal bases, we may assume that

ρj =

[
ρj1

. . .
ρjn

]
and σj =

[
σj1

. . .
σjm

]
, j = 1, . . . , k.

Then there is a (unital / trace preserving / doubly stochastic) completely
positive linear map Φ such that

Φ(ρj ) = σj for j = 1, . . . , k,

if and only if there is an n×m nonnegative (column / row / doubly stochastic)
matrix D such that [

σ11 · · · σ1m
...

. . .
...

σk1 · · · σkm

]
=

[
ρ11 · · · ρ1n
...

. . .
...

ρk1 · · · ρkn

]
D.

From D, one can construct F1, . . . ,Fr to get the desired quantum channel.
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Remarks

Finding a column stochastic, or a doubly stochastic D such that

[σij ] = [ρij ]D

is a non-trivial feasibility problem in linear programming.

Nevertheless, there are efficient numerical algorithms.

More challenging problem: Impose additional requirements on D, say,
construct a TPCP map with the minimum number of F1, . . . ,Fr .

The techniques in the study of nonnegative matrix equations and linear
programming will be useful.

The results were extended to compact operators in:
M.H. Hsu, L.W. Kuo, M.C. Tsai, Completely positive interpolations of compact, trace-class and Schatten-p

class operators. J. Funct. Anal. 267 (2014), no. 4, 1205–1240.
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Results on Pure States (Rank one orthogonal projections)

A density matrix ρ ∈ Dn is a pure state if it is of rank one.

That is ρ = |x〉〈x | for a unit vector |x〉 ∈ Cn.

Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]
Suppose |x1〉, . . . , |xk〉 ∈ Cn and |y1〉, . . . , |yk〉 ∈ Cm are unit vectors. The
following conditions are equivalent.
(a) There is a quantum channel Φ : Mn → Mm such that

Φ(|xi〉〈xi |) = |yi〉〈yi | for i = 1, . . . , k.

(b) There is a positive semidefinite matrix C = (Cij ) ∈ Mk such that

[〈xi |xj〉] = C ◦ [〈yi |yj〉] = [Cij〈yi |yj〉].

One can use the matrix C to construct the matrices F1, . . . ,Fr in the operator
sum representation of the TPCP map.
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Remarks

Note that [〈xi |xj〉] and [〈yi |yj〉] have all diagonal entries equal to one.

So, the psd matrix C (if exists) satisfying C ◦ [〈yi |yj〉] = [〈xi |xj〉] also has
diagonal entries equal to one, i.e., C is a correlation matrix.

Finding the correlation matrix C could be challenging.
If 〈yi |yj〉 6= 0 for all (i , j), then the problem is easy because only one
candidate for C , namely, C =

[
〈xi |xj〉
〈yi |yj〉

]
.

If 〈yi |yj〉 = 0 for some (i , j), then 〈xi |xj〉 must also be zero if C exists.
However, it is difficult to determine what cij should/could be in the
positions when 〈yi |yj〉 = 0 = 〈xi |xj〉 to get a correlation matrix C .

This is known as the completion problem for psd matrices in matrix
theory research.

One can use positive semi-definite programming method to solve the
problem numerically.
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A general result

Theorem [Huang, Li, E.Poon, Sze, 2012]
Suppose ρ1, . . . , ρk ∈ Mn and σ1, . . . , σk ∈ Mm are density matrices with
spectral decomposition:

ρi = Xi D2
i X †i and σi = Yi D̃2

i Y †i , i = 1, . . . , k,

for some diagonal matrices Di ∈ Mri , D̃i ∈ Msi with positive diagonal entries.

There is a TPCP map Φ : Mn → Mm such that Φ(ρi ) = σi for all i
if and only if:

For each i = 1, . . . , k and j = 1, . . . , ri , there are si × s matrices Vij such that

[Vi1 · · ·Vri ][Vi1 · · ·Vri ]
† = Isi

and
[Di X †i XjDj ] = [tr (V †ipD̃†i Y †i YjD̃jVjq)]1≤p≤ri ,1≤q≤rj .
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Remarks

Computationally, the result is impractical.

Nevertheless, one can deduce the following results on pure states:

Φ(|xi〉〈xi |) = |yi〉〈yi | for i = 1, . . . , n;

Φ(|xi〉〈xi |) = σi for i = 1, . . . , n;

Φ(ρi ) = |yi〉〈yi | for i = 1, . . . , n.

Question Can we find better ways to determine whether the desired
quantum operation exists?

Answer One can use Semi-Definite Programming (SDP) to solve it.

But, SDP is inefficient even for moderate size problems.
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Alternating Projection Methods
In my 2014 IQC visit, we (Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz) studied
the problem using alternating projection methods on two closed convex sets C
and D.
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Set up of our problem

By a result of Choi, a linear map Φ : Mn → Mm is completely positive if
and only if

the block matrix

C(Φ) = [Φ(Eij )]1≤i,j≤n ∈ Mn(Mm) = Mnm

is positive semi-definite, where Eij = |ei〉〈ej | is the standard matrix unit.
Thus, one may construct a CP map by constructing a positive
semi-definite matrix P = [Pij ] ∈ Mn(Mm).
The trace preserving condition translates to

tr Pij = δij . (1)

Evidently, Φ(ρ) = σ if and only if
∑

r,s ρrsΦ(Ers) =
∑

r,s ρrsPrs = σ.

The requirement that Φ(ρj ) = σj for j = 1, . . . , k becomes:∑
r,s

(ρj )rsPrs = σj j = 1, . . . , k. (2)
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Let C be the cone of positive semi-definite
matrices [Pij ] in Mn(Mm).

Let D be the set of Hermitian matrices [Pij ]
in Mn(Mm) satisfying the linear constraints
(equations) (1) and (2).
Using the theory about the projection of a matrix on the PSD cone, we
obtained an alternating projection algorithm to solve the problem.

Algorithm [Drusvyatskiy,Li,Pelejo,Voronin,Wolkowicz,2015]

Step 1. Choose P0 = αImn for α > 0.
Step 2. If P2k in C is constructed, project P2k to the set D to obtain
P2k+1 by the least square method. Go to Step 3.
Step 3. Suppose P2k+1 in D is constructed with spectral decomposition

P2k+1 =
∑mn

j=1 λj |λj〉〈λj |.

Construct P2k+2 =
∑

λj>0 λj |λj〉〈λj |. Go to Step 2.

Dmitriy Drusvyatskiy, Chi-Kwong Li, Diane Pelejo, Yuen-Lam Voronin, Henry Wolkowicz, Projection Methods for

Quantum Channel Construction, Quantum Inf Process (2015) 14:30753096 DOI 10.1007/s11128-015-1024-y.
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Remarks

Matlab was used to implement the algorithm that could handle 20 pairs
of matrices (ρj , σj ) of sizes over 100.

We can impose other requirements.

* Find [Pij ] with the maximum/minimum (Choi) rank r so that satisfying
our requirement, i.e. find the minimum r such that

Φ(ρ) =
r∑

j=1

FjρF †j .

We also use the Douglas-Rachford Alternating Projection method.
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More restriction on quantum channels

Not all quantum channels are equal! Some are more preferred.

A quantum channel Φ : Mn → Mm is “unital” if Φ(In/n) = Im/m.
A quantum channel Φ : Mn → Mn is mixed (random) unitary if

Φ(ρ) = p1U1ρU†1 + · · ·+ pkUkρU†k

for some probability vector (p1, . . . , pk ) and unitary matrices
U1, . . . ,Uk ∈ Mn.
A quantum channel Φ : Mn → Mn is unitary if there is a unitary U such
that

Φ(ρ) = UρU† for all ρ ∈ Mn.
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Detecting mixed unitary channel

Detecting a unital channel is easy. Just check Φ(I/n) = I/n.

In construction, just add the constraint P11 + · · · + Pnn = In in the construction of C(Φ) = (Pij ).

Detecting a mixed unitary channel is not so easy.
We need to write C(Φ) as a convex sum of C(Ψ1), . . . ,C(Ψr )

such that Ψ1, . . . ,Ψr are unitary channels.
Equivalently, C(Ψj ) = vjv†j where v†j = [v†j1, . . . , v

†
jn] so that

Vj = [vj1 · · · vjn] is unitary.
Let C(Φ) = RR†, where R is n2 × k, where k is the rank of C(Φ),

which is known as the Choi rank of Φ.
Find a k × r matrix T = [T1 · · ·Tr ] such that TT † = Ik so that
P = RTT †R† = VV † with V = [v1 · · · vr ] satisfying the above condition.
By the result of [Leung, Li, Poon, Watrous, 2010+],

r ≤ k2 − 3.
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An algorithm

Let C(Φ) = (Pij ) ∈ Mn(Mn) be the Choi matrix of a (unital) channel.
Note: P is positive semidefinite, tr (Pij ) = δij , P11 + · · · + Pnn = In .

Step 1. Write P = RR†, where R is n2 × k and k is the rank of P.

Step 2. Let B = {H1, . . . ,Hn2−1} be a basis for the real linear space of trace
zero Hermitian matrices in Mn, and let

Kj = V †(I ⊗ Hj )V ∈ Mr , j = 1, . . . ,N = n2 − 1.

Step 3. Find an k × r matrix T (with smallest r if possible) such that

TT † = Ik and T †KjT ∈ Mr has zero diagonal entries for j = 1, . . . , `.

If such a T exists, then Φ is mixed unitary.
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Additional problems
Check whether the Werner-Holevo channel Φ : Mn → Mn defined by

Φ(ρ) = 1
n + 1((tr ρ)In + ρt)

can be written as a mix (the average) of N = n(n +1)/2 unitary channels.

Equivalently, determine whether there are symmetric unitary matrices
U1, . . . ,UN ∈ Mn such that tr (U†i Uj ) = 0 for all i 6= j.
If exists, the set {U1, . . . ,UN} will form an orthogonal basis for the
subspace of complex symmetric matrices in Mn.
Only confirm for even n and n = 3, 5. Other cases are open.
Also, we are using projection methods to find quantum states and
quantum channels with special properties such as:

low rank, extreme entropy, having prescribed reduced states,
extreme channel capacity, extreme channel complexity, etc.

Hope that to tell you more next time.

Thank you for your attention!
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