Quantum States and Quantum Operations

Chi-Kwong Li

Department of Mathematics, The College of William and Mary. Institute for Quantum Computing, University of Waterloo.

・日・ ・ヨ・ ・ヨ・

• Design a quantum algorithm to use quantum properties to get useful information for a given problem.

(4月) トイヨト イヨト

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.

向下 イヨト イヨト

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.
- Prepare the initial (entangled) quantum states.

向下 イヨト イヨト

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.
- Prepare the initial (entangled) quantum states.
- Prepare a suitable environment for the quantum system to evolve according to quantum mechanical rules.

・ 同下 ・ ヨト ・ ヨト

- Design a quantum algorithm to use quantum properties to get useful information for a given problem.
- Choose a suitable quantum system to build the hardware.
- Prepare the initial (entangled) quantum states.
- Prepare a suitable environment for the quantum system to evolve according to quantum mechanical rules.
- Apply suitable measurement to extract useful information.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Mathematically, quantum states are represented by density matrices,

イロン 不同 とうほどう ほどう

臣

• Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.

回ト・モト・モト

臣

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are

向下 イヨト イヨト

Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are trace preserving completely positive linear (TPCP) maps.

白 ト イ ヨ ト イ ヨ ト

Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_n \to M_m$ has the operator sum representation:

$$\Phi(\rho) = F_1 \rho F_1^{\dagger} + \dots + F_r \rho F_r^{\dagger}$$

for some $m \times n$ matrices F_1, \ldots, F_r satisfying $F_1^{\dagger}F_1 + \cdots + F_r^{\dagger}F_r = I_n$.

Mathematical framework

- Mathematically, quantum states are represented by density matrices, that is, positive semi-definite matrices with trace one.
- Quantum operations (also known as quantum channels) are trace preserving completely positive linear (TPCP) maps.
- By a result of Choi (and also Kraus), each TPCP map $\Phi: M_n \to M_m$ has the operator sum representation:

$$\Phi(\rho) = F_1 \rho F_1^{\dagger} + \dots + F_r \rho F_r^{\dagger}$$

for some $m \times n$ matrices F_1, \ldots, F_r satisfying $F_1^{\dagger}F_1 + \cdots + F_r^{\dagger}F_r = I_n$.

 So, one can do QIS research if one knows positive semi-definite matrices and the sum of linear maps of the form ρ → FρF[†]!

イロト イボト イヨト

白 ト イヨ ト イヨ ト

臣

Interpolation Problem

Given $\{\rho_1, \ldots, \rho_k\} \subseteq D_n$ and $\{\sigma_1, \ldots, \sigma_k\} \subseteq D_m$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Interpolation Problem Given $\{\rho_1, \ldots, \rho_k\} \subseteq D_n$ and $\{\sigma_1, \ldots, \sigma_k\} \subseteq D_m$.

Construct a quantum operation sending ρ_i to σ_i for i = 1, ..., k, if it exists.

(日本) (日本) (日本)

Interpolation Problem

Given $\{\rho_1, \ldots, \rho_k\} \subseteq D_n$ and $\{\sigma_1, \ldots, \sigma_k\} \subseteq D_m$.

Construct a quantum operation sending ρ_i to σ_i for i = 1, ..., k, if it exists.

In other words, given $\rho_1, \ldots, \rho_k \in D_n$ and $\sigma_1, \ldots, \sigma_k \in D_m$, find $m \times n$ matrices F_1, \ldots, F_r such that $F_1^{\dagger}F_1 + \cdots + F_r^{\dagger}F_r = I_n$ and

 $\sigma_i = F_1 \rho_i F_1^{\dagger} + \dots + F_r \rho_i F_r^{\dagger} \qquad \text{for all } i = 1, \dots, k.$

(日本) (日本) (日本)

Interpolation Problem

Given $\{\rho_1, \ldots, \rho_k\} \subseteq D_n$ and $\{\sigma_1, \ldots, \sigma_k\} \subseteq D_m$.

Construct a quantum operation sending ρ_i to σ_i for i = 1, ..., k, if it exists.

In other words, given $\rho_1, \ldots, \rho_k \in D_n$ and $\sigma_1, \ldots, \sigma_k \in D_m$, find $m \times n$ matrices F_1, \ldots, F_r such that $F_1^{\dagger}F_1 + \cdots + F_r^{\dagger}F_r = I_n$ and

$$\sigma_i = F_1 \rho_i F_1^{\dagger} + \dots + F_r \rho_i F_r^{\dagger} \qquad \text{for all } i = 1, \dots, k.$$

So, just solve the matrix equations for the unknowns F_1, \ldots, F_r .

Suppose $\{\rho_1, \ldots, \rho_k\}$ and $\{\sigma_1, \ldots, \sigma_k\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$ho_j = egin{bmatrix}
ho_{j1} & & \ & & \ & & & \ & & &
ho_{jm} \end{bmatrix}$$
 and $\sigma_j = egin{bmatrix} \sigma_{j1} & & & \ & & & \ & & & & \ & & & \sigma_{jm} \end{bmatrix}$, $j = 1, \dots, k$.

ヘロンス 望 アメ ほ アメ ほ アー

э

Suppose $\{\rho_1, \ldots, \rho_k\}$ and $\{\sigma_1, \ldots, \sigma_k\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$\rho_j = \begin{bmatrix} \rho_{j1} & & \\ & \ddots & \\ & & \rho_{jn} \end{bmatrix} \quad \text{and} \quad \sigma_j = \begin{bmatrix} \sigma_{j1} & & \\ & \ddots & \\ & & \sigma_{jm} \end{bmatrix}, \quad j = 1, \dots, k.$$

Then there is a (unital / trace preserving / doubly stochastic) completely positive linear map Φ such that

$$\Phi(\rho_j) = \sigma_j$$
 for $j = 1, \dots, k$,

イロン 人間 とくほ とくほとう

э

Suppose $\{\rho_1, \ldots, \rho_k\}$ and $\{\sigma_1, \ldots, \sigma_k\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$\rho_j = \begin{bmatrix}
\rho_{j1} & & \\ & \ddots & \\ & & & \rho_{jn}
\end{bmatrix}$$
 and $\sigma_j = \begin{bmatrix}
\sigma_{j1} & & \\ & \ddots & \\ & & & \sigma_{jm}
\end{bmatrix}$, $j = 1, \dots, k$.

Then there is a (unital / trace preserving / doubly stochastic) completely positive linear map Φ such that

$$\Phi(\rho_j) = \sigma_j$$
 for $j = 1, \ldots, k$,

if and only if there is an $n \times m$ nonnegative (column / row / doubly stochastic) matrix D such that

$$\begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1m} \\ \vdots & \ddots & \vdots \\ \sigma_{k1} & \cdots & \sigma_{km} \end{bmatrix} = \begin{bmatrix} \rho_{11} & \cdots & \rho_{1n} \\ \vdots & \ddots & \vdots \\ \rho_{k1} & \cdots & \rho_{kn} \end{bmatrix} D.$$

イロン 人間 とくほ とくほとう

Suppose $\{\rho_1, \ldots, \rho_k\}$ and $\{\sigma_1, \ldots, \sigma_k\}$ are commuting families. Then with a suitable choice of orthonormal bases, we may assume that

$$\rho_j = \begin{bmatrix}
\rho_{j1} & & \\ & \ddots & \\ & & & \rho_{jn}
\end{bmatrix}$$
 and $\sigma_j = \begin{bmatrix}
\sigma_{j1} & & \\ & \ddots & \\ & & & \sigma_{jm}
\end{bmatrix}$, $j = 1, \dots, k$.

Then there is a (unital / trace preserving / doubly stochastic) completely positive linear map Φ such that

$$\Phi(\rho_j) = \sigma_j$$
 for $j = 1, \ldots, k$,

if and only if there is an $n \times m$ nonnegative (column / row / doubly stochastic) matrix D such that

$$\begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1m} \\ \vdots & \ddots & \vdots \\ \sigma_{k1} & \cdots & \sigma_{km} \end{bmatrix} = \begin{bmatrix} \rho_{11} & \cdots & \rho_{1n} \\ \vdots & \ddots & \vdots \\ \rho_{k1} & \cdots & \rho_{kn} \end{bmatrix} D.$$

From D, one can construct F_1, \ldots, F_r to get the desired quantum channel.

Remarks

Chi-Kwong Li Quantum States and Quantum Operations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

æ

$$[\sigma_{ij}] = [\rho_{ij}]D$$

is a non-trivial feasibility problem in linear programming.

イロン 不同 とうほどう ほどう

臣

$$[\sigma_{ij}] = [\rho_{ij}]D$$

is a non-trivial feasibility problem in linear programming.

• Nevertheless, there are efficient numerical algorithms.

・ロト ・日ト ・ヨト ・ヨト

臣

$$[\sigma_{ij}] = [\rho_{ij}]D$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on D,

$$[\sigma_{ij}] = [\rho_{ij}]D$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on *D*, say, construct a TPCP map with the minimum number of *F*₁,...,*F*_r.

$$[\sigma_{ij}] = [\rho_{ij}]D$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on *D*, say, construct a TPCP map with the minimum number of *F*₁,...,*F_r*.
- The techniques in the study of nonnegative matrix equations and linear programming will be useful.

$$[\sigma_{ij}] = [\rho_{ij}]D$$

is a non-trivial feasibility problem in linear programming.

- Nevertheless, there are efficient numerical algorithms.
- More challenging problem: Impose additional requirements on *D*, say, construct a TPCP map with the minimum number of *F*₁,...,*F_r*.
- The techniques in the study of nonnegative matrix equations and linear programming will be useful.
- The results were extended to compact operators in:

M.H. Hsu, L.W. Kuo, M.C. Tsai, Completely positive interpolations of compact, trace-class and Schatten-p class operators. J. Funct. Anal. 267 (2014), no. 4, 1205–1240.

A density matrix $\rho \in D_n$ is a pure state if it is of rank one.

▶ ★ E ▶ ★ E ▶

A density matrix $\rho \in D_n$ is a pure state if it is of rank one.

That is $\rho = |x\rangle\langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^n$.

同トイヨトイヨト

A density matrix $\rho \in D_n$ is a pure state if it is of rank one.

That is $\rho = |x\rangle \langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^n$.

Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $|x_1\rangle, \ldots, |x_k\rangle \in \mathbb{C}^n$ and $|y_1\rangle, \ldots, |y_k\rangle \in \mathbb{C}^m$ are unit vectors. The following conditions are equivalent.

・ 同 ト ・ ヨ ト ・ ヨ ト

A density matrix $\rho \in D_n$ is a pure state if it is of rank one.

That is $\rho = |x\rangle \langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^n$.

Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $|x_1\rangle, \ldots, |x_k\rangle \in \mathbb{C}^n$ and $|y_1\rangle, \ldots, |y_k\rangle \in \mathbb{C}^m$ are unit vectors. The following conditions are equivalent.

(a) There is a quantum channel $\Phi: M_n \to M_m$ such that

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i|$$
 for $i = 1, ..., k$.

(4月) トイヨト イヨト

A density matrix $\rho \in D_n$ is a pure state if it is of rank one.

That is $\rho = |x\rangle \langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^n$.

Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $|x_1\rangle, \ldots, |x_k\rangle \in \mathbb{C}^n$ and $|y_1\rangle, \ldots, |y_k\rangle \in \mathbb{C}^m$ are unit vectors. The following conditions are equivalent.

(a) There is a quantum channel $\Phi: M_n \to M_m$ such that

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i|$$
 for $i = 1, ..., k$.

(b) There is a positive semidefinite matrix $C = (C_{ij}) \in M_k$ such that

$$[\langle x_i | x_j \rangle] = C \circ [\langle y_i | y_j \rangle] = [C_{ij} \langle y_i | y_j \rangle].$$

A density matrix $\rho \in D_n$ is a pure state if it is of rank one.

That is $\rho = |x\rangle \langle x|$ for a unit vector $|x\rangle \in \mathbb{C}^n$.

Theorem [Chefles, Jozsa, Winter, 2004], [Huang, Li, E.Poon, Sze, 2012]

Suppose $|x_1\rangle, \ldots, |x_k\rangle \in \mathbb{C}^n$ and $|y_1\rangle, \ldots, |y_k\rangle \in \mathbb{C}^m$ are unit vectors. The following conditions are equivalent.

(a) There is a quantum channel $\Phi: M_n \to M_m$ such that

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i|$$
 for $i = 1, ..., k$.

(b) There is a positive semidefinite matrix $C = (C_{ij}) \in M_k$ such that

$$[\langle x_i|x_j\rangle] = C \circ [\langle y_i|y_j\rangle] = [C_{ij}\langle y_i|y_j\rangle].$$

One can use the matrix C to construct the matrices F_1, \ldots, F_r in the operator sum representation of the TPCP map.

Remarks

• Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.

イロト イヨト イヨト イヨト

2
- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one,

イロト 人間 トイヨト イヨト

3

- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one, i.e., C is a correlation matrix.

イロン 不同 とうほどう ほどう

- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one, i.e., C is a correlation matrix.
- Finding the correlation matrix C could be challenging.

イロト イポト イヨト イヨト

- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one, i.e., C is a correlation matrix.
- Finding the correlation matrix C could be challenging.
- If $\langle y_i | y_j \rangle \neq 0$ for all (i, j), then the problem is easy because only one candidate for *C*, namely, $C = \left[\frac{\langle x_i | x_j \rangle}{\langle y_i | y_j \rangle}\right]$.

イロト イボト イヨト イヨト

- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one, i.e., C is a correlation matrix.
- Finding the correlation matrix C could be challenging.
- If $\langle y_i | y_j \rangle \neq 0$ for all (i, j), then the problem is easy because only one candidate for *C*, namely, $C = \left[\frac{\langle x_i | x_j \rangle}{\langle y_i | y_j \rangle}\right]$.
- If $\langle y_i | y_j \rangle = 0$ for some (i, j), then $\langle x_i | x_j \rangle$ must also be zero if C exists.

イロト イボト イヨト

- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one, i.e., C is a correlation matrix.
- Finding the correlation matrix C could be challenging.
- If $\langle y_i | y_j \rangle \neq 0$ for all (i, j), then the problem is easy because only one candidate for *C*, namely, $C = \left[\frac{\langle x_i | x_j \rangle}{\langle y_i | y_j \rangle}\right]$.
- If ⟨y_i|y_j⟩ = 0 for some (i, j), then ⟨x_i|x_j⟩ must also be zero if C exists. However, it is difficult to determine what c_{ij} should/could be in the positions when ⟨y_i|y_j⟩ = 0 = ⟨x_i|x_j⟩ to get a correlation matrix C.

イロト イボト イヨト

- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one, i.e., C is a correlation matrix.
- Finding the correlation matrix C could be challenging.
- If $\langle y_i | y_j \rangle \neq 0$ for all (i, j), then the problem is easy because only one candidate for *C*, namely, $C = \left[\frac{\langle x_i | x_j \rangle}{\langle y_i | y_j \rangle}\right]$.
- If ⟨y_i|y_j⟩ = 0 for some (i, j), then ⟨x_i|x_j⟩ must also be zero if C exists. However, it is difficult to determine what c_{ij} should/could be in the positions when ⟨y_i|y_j⟩ = 0 = ⟨x_i|x_j⟩ to get a correlation matrix C.
- This is known as the completion problem for psd matrices in matrix theory research.

イロト 不得 トイラト イラト 二日

- Note that $[\langle x_i | x_j \rangle]$ and $[\langle y_i | y_j \rangle]$ have all diagonal entries equal to one.
- So, the psd matrix C (if exists) satisfying C ∘ [⟨y_i|y_j⟩] = [⟨x_i|x_j⟩] also has diagonal entries equal to one, i.e., C is a correlation matrix.
- Finding the correlation matrix C could be challenging.
- If $\langle y_i | y_j \rangle \neq 0$ for all (i, j), then the problem is easy because only one candidate for *C*, namely, $C = \left[\frac{\langle x_i | x_j \rangle}{\langle y_i | y_j \rangle}\right]$.
- If ⟨y_i|y_j⟩ = 0 for some (i, j), then ⟨x_i|x_j⟩ must also be zero if C exists. However, it is difficult to determine what c_{ij} should/could be in the positions when ⟨y_i|y_j⟩ = 0 = ⟨x_i|x_j⟩ to get a correlation matrix C.
- This is known as the completion problem for psd matrices in matrix theory research.
- One can use positive semi-definite programming method to solve the problem numerically.

イロト 不得 トイラト イラト 二日

Theorem [Huang, Li, E.Poon, Sze, 2012]

Suppose $\rho_1, \ldots, \rho_k \in M_n$ and $\sigma_1, \ldots, \sigma_k \in M_m$ are density matrices with spectral decomposition:

$$ho_i = X_i D_i^2 X_i^\dagger$$
 and $\sigma_i = Y_i \tilde{D}_i^2 Y_i^\dagger, \quad i = 1, \dots, k,$

for some diagonal matrices $D_i \in M_{r_i}$, $\tilde{D}_i \in M_{s_i}$ with positive diagonal entries.

イロト イポト イヨト イヨト

Theorem [Huang, Li, E.Poon, Sze, 2012]

Suppose $\rho_1, \ldots, \rho_k \in M_n$ and $\sigma_1, \ldots, \sigma_k \in M_m$ are density matrices with spectral decomposition:

$$\rho_i = X_i D_i^2 X_i^{\dagger} \quad \text{and} \quad \sigma_i = Y_i \tilde{D}_i^2 Y_i^{\dagger}, \quad i = 1, \dots, k,$$

for some diagonal matrices $D_i \in M_{r_i}$, $\tilde{D}_i \in M_{s_i}$ with positive diagonal entries. There is a TPCP map $\Phi : M_n \to M_m$ such that $\Phi(\rho_i) = \sigma_i$ for all i

(4月) トイヨト イヨト

Theorem [Huang, Li, E.Poon, Sze, 2012]

Suppose $\rho_1, \ldots, \rho_k \in M_n$ and $\sigma_1, \ldots, \sigma_k \in M_m$ are density matrices with spectral decomposition:

$$ho_i = X_i D_i^2 X_i^{\dagger}$$
 and $\sigma_i = Y_i \tilde{D}_i^2 Y_i^{\dagger}$, $i = 1, \dots, k$,

for some diagonal matrices $D_i \in M_{r_i}$, $\tilde{D}_i \in M_{s_i}$ with positive diagonal entries.

There is a TPCP map $\Phi: M_n \to M_m$ such that $\Phi(\rho_i) = \sigma_i$ for all *i* if and only if:

For each i = 1, ..., k and $j = 1, ..., r_i$, there are $s_i \times s$ matrices V_{ij} such that

$$[V_{i1}\cdots V_{r_i}][V_{i1}\cdots V_{r_i}]^{\dagger}=I_{s_i}$$

and

$$[D_i X_i^{\dagger} X_j D_j] = [\operatorname{tr} (V_{ip}^{\dagger} \tilde{D}_i^{\dagger} Y_i^{\dagger} Y_j \tilde{D}_j V_{jq})]_{1 \le p \le r_i, 1 \le q \le r_j}.$$

イロト イポト イヨト イヨト

• Computationally, the result is impractical.

ヘロア 人間 アメヨア 人間 アー

2

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

イロト 人間 トイヨト イヨト

æ

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

 $\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i|$ for i = 1, ..., n;

イロト イヨト イヨト 一日

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n;$$

$$\Phi(|x_i\rangle\langle x_i|) = \sigma_i \text{ for } i = 1, \dots, n;$$

イロト イヨト イヨト イヨト 三日

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n;$$

$$\Phi(|x_i\rangle\langle x_i|) = \sigma_i \text{ for } i = 1, \dots, n;$$

$$\Phi(\rho_i) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n.$$

イロト イヨト イヨト イヨト 三日

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n;$$

$$\Phi(|x_i\rangle\langle x_i|) = \sigma_i \text{ for } i = 1, \dots, n;$$

$$\Phi(\rho_i) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n.$$

Question Can we find better ways to determine whether the desired quantum operation exists?

イロト 人間 トイヨト イヨト

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n;$$

$$\Phi(|x_i\rangle\langle x_i|) = \sigma_i \text{ for } i = 1, \dots, n;$$

$$\Phi(\rho_i) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n.$$

Question Can we find better ways to determine whether the desired quantum operation exists?

Answer One can use Semi-Definite Programming (SDP) to solve it.

イロト イポト イヨト イヨト

- Computationally, the result is impractical.
- Nevertheless, one can deduce the following results on pure states:

$$\Phi(|x_i\rangle\langle x_i|) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n;$$

$$\Phi(|x_i\rangle\langle x_i|) = \sigma_i \text{ for } i = 1, \dots, n;$$

$$\Phi(\rho_i) = |y_i\rangle\langle y_i| \text{ for } i = 1, \dots, n.$$

Question Can we find better ways to determine whether the desired quantum operation exists?

Answer One can use Semi-Definite Programming (SDP) to solve it.

But, SDP is inefficient even for moderate size problems.

イロト イポト イヨト イヨト

Alternating Projection Methods

In my 2014 IQC visit, we (Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz) studied the problem using alternating projection methods on two closed convex sets C and D.

向下 イヨト イヨト

Alternating Projection Methods

In my 2014 IQC visit, we (Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz) studied the problem using alternating projection methods on two closed convex sets C and D.

Figure 1: First few iterations of alternating projection algorithm. Both sequences are converging to the point $x^* \in C \cap D$.

イロト イポト イヨト イヨト

Figure 2: First few iterations of alternating projection algorithm, for a case in which $C \cap D = \emptyset$. The sequence x_k is converging to $x^* \in C$, and the sequence y_k is converging to $y^* \in D$, where $||x^* - y^*||_2 = \text{dist}(C, D)$.

イロン 不同 とうほどう ほどう

• By a result of Choi, a linear map $\Phi: M_n \to M_m$ is completely positive if and only if

イロン 不同 とうほどう ほどう

• By a result of Choi, a linear map $\Phi: M_n \to M_m$ is completely positive if and only if the block matrix

$$C(\Phi) = [\Phi(E_{ij})]_{1 \leq i,j \leq n} \in M_n(M_m) = M_{nm}$$

is positive semi-definite, where $E_{ij} = |e_i\rangle\langle e_j|$ is the standard matrix unit.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

• By a result of Choi, a linear map $\Phi: M_n \to M_m$ is completely positive if and only if the block matrix

$$C(\Phi) = [\Phi(E_{ij})]_{1 \leq i,j \leq n} \in M_n(M_m) = M_{nm}$$

is positive semi-definite, where $E_{ij} = |e_i\rangle\langle e_j|$ is the standard matrix unit.

 Thus, one may construct a CP map by constructing a positive semi-definite matrix P = [P_{ij}] ∈ M_n(M_m).

(日本) (日本) (日本)

• By a result of Choi, a linear map $\Phi: M_n \to M_m$ is completely positive if and only if the block matrix

$$C(\Phi) = [\Phi(E_{ij})]_{1 \leq i,j \leq n} \in M_n(M_m) = M_{nm}$$

is positive semi-definite, where $E_{ij} = |e_i\rangle\langle e_j|$ is the standard matrix unit.

- Thus, one may construct a CP map by constructing a positive semi-definite matrix P = [P_{ij}] ∈ M_n(M_m).
- The trace preserving condition translates to

$$tr P_{ij} = \delta_{ij}.$$
 (1)

(1日) (1日) (1日)

• By a result of Choi, a linear map $\Phi: M_n \to M_m$ is completely positive if and only if the block matrix

$$C(\Phi) = [\Phi(E_{ij})]_{1 \leq i,j \leq n} \in M_n(M_m) = M_{nm}$$

is positive semi-definite, where $E_{ij} = |e_i\rangle\langle e_j|$ is the standard matrix unit.

- Thus, one may construct a CP map by constructing a positive semi-definite matrix P = [P_{ij}] ∈ M_n(M_m).
- The trace preserving condition translates to

$$tr P_{ij} = \delta_{ij}.$$
 (1)

イロト イポト イヨト イヨト

• Evidently, $\Phi(\rho) = \sigma$ if and only if $\sum_{r,s} \rho_{rs} \Phi(E_{rs}) = \sum_{r,s} \rho_{rs} P_{rs} = \sigma$.

• By a result of Choi, a linear map $\Phi: M_n \to M_m$ is completely positive if and only if the block matrix

$$C(\Phi) = [\Phi(E_{ij})]_{1 \leq i,j \leq n} \in M_n(M_m) = M_{nm}$$

is positive semi-definite, where $E_{ij} = |e_i\rangle\langle e_j|$ is the standard matrix unit.

- Thus, one may construct a CP map by constructing a positive semi-definite matrix P = [P_{ij}] ∈ M_n(M_m).
- The trace preserving condition translates to

$$tr P_{ij} = \delta_{ij}.$$
 (1)

イロト イポト イヨト イヨト

- Evidently, $\Phi(\rho) = \sigma$ if and only if $\sum_{r,s} \rho_{rs} \Phi(E_{rs}) = \sum_{r,s} \rho_{rs} P_{rs} = \sigma$.
- The requirement that Φ(ρ_j) = σ_j for j = 1,..., k becomes:

$$\sum_{r,s} (\rho_j)_{rs} P_{rs} = \sigma_j \quad j = 1, \dots, k.$$
⁽²⁾

 Let C be the cone of positive semi-definite matrices [P_{ii}] in M_n(M_m).

イロト イヨト イヨト イヨト

1

- Let C be the cone of positive semi-definite matrices [P_{ij}] in M_n(M_m).
- Let **D** be the set of Hermitian matrices $[P_{ij}]$ in $M_n(M_m)$ satisfying the linear constraints (equations) (1) and (2).

→ Ξ →

- Let C be the cone of positive semi-definite matrices [P_{ij}] in M_n(M_m).
- Let **D** be the set of Hermitian matrices $[P_{ij}]$ in $M_n(M_m)$ satisfying the linear constraints (equations) (1) and (2).

• Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.

- Let C be the cone of positive semi-definite matrices [P_{ij}] in M_n(M_m).
- Let **D** be the set of Hermitian matrices $[P_{ij}]$ in $M_n(M_m)$ satisfying the linear constraints (equations) (1) and (2).

- 4 回 ト 4 ヨ ト 4 ヨ ト

• Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.

Algorithm [Drusvyatskiy,Li,Pelejo,Voronin,Wolkowicz,2015]

- Let C be the cone of positive semi-definite matrices [P_{ij}] in M_n(M_m).
- Let **D** be the set of Hermitian matrices $[P_{ij}]$ in $M_n(M_m)$ satisfying the linear constraints (equations) (1) and (2).

イロト イポト イヨト イヨト

• Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.

Algorithm [Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz, 2015]

• Step 1. Choose $P_0 = \alpha I_{mn}$ for $\alpha > 0$.

- Let C be the cone of positive semi-definite matrices [P_{ij}] in M_n(M_m).
- Let **D** be the set of Hermitian matrices $[P_{ij}]$ in $M_n(M_m)$ satisfying the linear constraints (equations) (1) and (2).

イロト イポト イヨト イヨト

• Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.

Algorithm [Drusvyatskiy,Li,Pelejo,Voronin,Wolkowicz,2015]

- Step 1. Choose $P_0 = \alpha I_{mn}$ for $\alpha > 0$.
- Step 2. If P_{2k} in **C** is constructed, project P_{2k} to the set **D** to obtain P_{2k+1} by the least square method. Go to Step 3.

- Let C be the cone of positive semi-definite matrices [P_{ij}] in M_n(M_m).
- Let **D** be the set of Hermitian matrices $[P_{ij}]$ in $M_n(M_m)$ satisfying the linear constraints (equations) (1) and (2).

イロト イポト イヨト イヨト

• Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.

Algorithm [Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz, 2015]

- Step 1. Choose $P_0 = \alpha I_{mn}$ for $\alpha > 0$.
- Step 2. If P_{2k} in **C** is constructed, project P_{2k} to the set **D** to obtain P_{2k+1} by the least square method. Go to Step 3.
- Step 3. Suppose P_{2k+1} in **D** is constructed with spectral decomposition

$$P_{2k+1} = \sum_{j=1}^{mn} \lambda_j |\lambda_j\rangle \langle \lambda_j |.$$

Construct $P_{2k+2} = \sum_{\lambda_j > 0} \lambda_j |\lambda_j\rangle \langle \lambda_j |$. Go to Step 2.

- Let C be the cone of positive semi-definite matrices [P_{ij}] in M_n(M_m).
- Let **D** be the set of Hermitian matrices $[P_{ij}]$ in $M_n(M_m)$ satisfying the linear constraints (equations) (1) and (2).

• Using the theory about the projection of a matrix on the PSD cone, we obtained an alternating projection algorithm to solve the problem.

Algorithm [Drusvyatskiy, Li, Pelejo, Voronin, Wolkowicz, 2015]

- Step 1. Choose $P_0 = \alpha I_{mn}$ for $\alpha > 0$.
- Step 2. If P_{2k} in **C** is constructed, project P_{2k} to the set **D** to obtain P_{2k+1} by the least square method. Go to Step 3.
- Step 3. Suppose P_{2k+1} in **D** is constructed with spectral decomposition

$$P_{2k+1} = \sum_{j=1}^{mn} \lambda_j |\lambda_j\rangle \langle \lambda_j |.$$

Construct
$$P_{2k+2} = \sum_{\lambda_j > 0} \lambda_j |\lambda_j\rangle \langle \lambda_j |$$
. Go to Step 2.

Dmitriy Drusvyatskiy, Chi-Kwong Li, Diane Pelejo, Yuen-Lam Voronin, Henry Wolkowicz, Projection Methods for Quantum Channel Construction, Quantum Inf Process (2015) 14:30753096 DOI 10.1007/s11128_015-1024-y.
Matlab was used to implement the algorithm that could handle 20 pairs of matrices (ρ_j, σ_j) of sizes over 100.

イロト 人間 トイヨト イヨト

Э

- Matlab was used to implement the algorithm that could handle 20 pairs of matrices (ρ_j, σ_j) of sizes over 100.
- We can impose other requirements.

イロン 不同 とうほどう ほどう

- Matlab was used to implement the algorithm that could handle 20 pairs of matrices (ρ_j, σ_j) of sizes over 100.
- We can impose other requirements.

* Find $[P_{ij}]$ with the maximum/minimum (Choi) rank r so that satisfying our requirement, i.e. find the minimum r such that

$$\Phi(
ho) = \sum_{j=1}^r F_j
ho F_j^{\dagger}.$$

イロト 人間 トイヨト イヨト

- Matlab was used to implement the algorithm that could handle 20 pairs of matrices (ρ_j, σ_j) of sizes over 100.
- We can impose other requirements.

* Find $[P_{ij}]$ with the maximum/minimum (Choi) rank r so that satisfying our requirement, i.e. find the minimum r such that

$$\Phi(
ho) = \sum_{j=1}^r F_j
ho F_j^{\dagger}.$$

• We also use the Douglas-Rachford Alternating Projection method.

イロン スロン スロン スロン

Э

・ 回 ト ・ ヨ ト ・ ヨ ト

• A quantum channel $\Phi: M_n \to M_m$ is "unital" if $\Phi(I_n/n) = I_m/m$.

・ 回 ト ・ ヨ ト ・ ヨ ト

- A quantum channel $\Phi: M_n \to M_m$ is "unital" if $\Phi(I_n/n) = I_m/m$.
- A quantum channel $\Phi: M_n \to M_n$ is mixed (random) unitary if

$$\Phi(\rho) = p_1 U_1 \rho U_1^{\dagger} + \cdots + p_k U_k \rho U_k^{\dagger}$$

for some probability vector (p_1, \ldots, p_k) and unitary matrices $U_1, \ldots, U_k \in M_n$.

(周) (日) (日)

- A quantum channel $\Phi: M_n \to M_m$ is "unital" if $\Phi(I_n/n) = I_m/m$.
- A quantum channel $\Phi: M_n \to M_n$ is mixed (random) unitary if

$$\Phi(\rho) = p_1 U_1 \rho U_1^{\dagger} + \cdots + p_k U_k \rho U_k^{\dagger}$$

for some probability vector (p_1, \ldots, p_k) and unitary matrices $U_1, \ldots, U_k \in M_n$.

• A quantum channel $\Phi: M_n \to M_n$ is unitary if there is a unitary U such that

$$\Phi(\rho) = U \rho U^{\dagger}$$
 for all $\rho \in M_n$.

(日本) (日本) (日本)

• Detecting a unital channel is easy. Just check $\Phi(I/n) = I/n$.

イロト イヨト イヨト イヨト

• Detecting a unital channel is easy. Just check $\Phi(I/n) = I/n$.

In construction, just add the constraint $P_{11} + \cdots + P_{nn} = I_n$ in the construction of $C(\Phi) = (P_{ij})$.

イロト 人間 トイヨト イヨト

• Detecting a unital channel is easy. Just check $\Phi(I/n) = I/n$.

In construction, just add the constraint $P_{11} + \cdots + P_{nn} = I_n$ in the construction of $C(\Phi) = (P_{ij})$.

• Detecting a mixed unitary channel is not so easy.

(日本) (日本) (日本)

3

- Detecting a unital channel is easy. Just check Φ(I/n) = I/n.
 In construction, just add the constraint P₁₁ + · · · + P_{nn} = I_n in the construction of C(Φ) = (P_{ij}).
- Detecting a mixed unitary channel is not so easy.
- We need to write C(Φ) as a convex sum of C(Ψ₁),..., C(Ψ_r) such that Ψ₁,..., Ψ_r are unitary channels.

イロト イボト イヨト

3

- Detecting a unital channel is easy. Just check Φ(I/n) = I/n.
 In construction, just add the constraint P₁₁ + · · · + P_{nn} = I_n in the construction of C(Φ) = (P_{ij}).
- Detecting a mixed unitary channel is not so easy.
- We need to write C(Φ) as a convex sum of C(Ψ₁),..., C(Ψ_r) such that Ψ₁,..., Ψ_r are unitary channels.
- Equivalently, $C(\Psi_j) = \mathbf{v}_j \mathbf{v}_j^{\dagger}$ where $\mathbf{v}_j^{\dagger} = [v_{j1}^{\dagger}, \dots, v_{jn}^{\dagger}]$ so that

 $V_j = [v_{j1} \cdots v_{jn}]$ is unitary.

イロト 不得 トイラト イラト・ラ

- Detecting a unital channel is easy. Just check Φ(I/n) = I/n.
 In construction, just add the constraint P₁₁ + · · · + P_{nn} = I_n in the construction of C(Φ) = (P_{ij}).
- Detecting a mixed unitary channel is not so easy.
- We need to write C(Φ) as a convex sum of C(Ψ₁),..., C(Ψ_r) such that Ψ₁,..., Ψ_r are unitary channels.
- Equivalently, $C(\Psi_j) = \mathbf{v}_j \mathbf{v}_j^{\dagger}$ where $\mathbf{v}_j^{\dagger} = [\mathbf{v}_{j1}^{\dagger}, \dots, \mathbf{v}_{jn}^{\dagger}]$ so that $V_i = [v_{i1} \cdots v_{in}]$ is unitary.
- Let C(Φ) = RR[†], where R is n² × k, where k is the rank of C(Φ), which is known as the Choi rank of Φ.

- 4 回 ト 4 日 ト - 日 日

- Detecting a unital channel is easy. Just check Φ(I/n) = I/n.
 In construction, just add the constraint P₁₁ + · · · + P_{nn} = I_n in the construction of C(Φ) = (P_{ij}).
- Detecting a mixed unitary channel is not so easy.
- We need to write C(Φ) as a convex sum of C(Ψ₁),..., C(Ψ_r) such that Ψ₁,..., Ψ_r are unitary channels.
- Equivalently, $C(\Psi_j) = \mathbf{v}_j \mathbf{v}_j^{\dagger}$ where $\mathbf{v}_j^{\dagger} = [\mathbf{v}_{j1}^{\dagger}, \dots, \mathbf{v}_{jn}^{\dagger}]$ so that $V_i = [v_{i1} \cdots v_{in}]$ is unitary.
- Let C(Φ) = RR[†], where R is n² × k, where k is the rank of C(Φ), which is known as the Choi rank of Φ.
- Find a $k \times r$ matrix $T = [T_1 \cdots T_r]$ such that $TT^{\dagger} = I_k$ so that $P = RTT^{\dagger}R^{\dagger} = VV^{\dagger}$ with $V = [\mathbf{v}_1 \cdots \mathbf{v}_r]$ satisfying the above condition.

イロト イボト イヨト

- Detecting a unital channel is easy. Just check Φ(I/n) = I/n.
 In construction, just add the constraint P₁₁ + · · · + P_{nn} = I_n in the construction of C(Φ) = (P_{ij}).
- Detecting a mixed unitary channel is not so easy.
- We need to write C(Φ) as a convex sum of C(Ψ₁),..., C(Ψ_r) such that Ψ₁,..., Ψ_r are unitary channels.
- Equivalently, $C(\Psi_j) = \mathbf{v}_j \mathbf{v}_j^{\dagger}$ where $\mathbf{v}_j^{\dagger} = [\mathbf{v}_{j1}^{\dagger}, \dots, \mathbf{v}_{jn}^{\dagger}]$ so that $V_i = [v_{i1} \cdots v_{in}]$ is unitary.
- Let C(Φ) = RR[†], where R is n² × k, where k is the rank of C(Φ), which is known as the Choi rank of Φ.
- Find a $k \times r$ matrix $T = [T_1 \cdots T_r]$ such that $TT^{\dagger} = I_k$ so that $P = RTT^{\dagger}R^{\dagger} = VV^{\dagger}$ with $V = [\mathbf{v}_1 \cdots \mathbf{v}_r]$ satisfying the above condition.
- By the result of [Leung, Li, Poon, Watrous, 2010+],

$$r \leq k^2 - 3.$$

イロト イボト イヨト

Let $C(\Phi) = (P_{ij}) \in M_n(M_n)$ be the Choi matrix of a (unital) channel.

Note: P is positive semidefinite, $tr(P_{ij}) = \delta_{ij}$, $P_{11} + \cdots + P_{nn} = I_n$.

イロン 不同 とうほどう ほどう

Let $C(\Phi) = (P_{ij}) \in M_n(M_n)$ be the Choi matrix of a (unital) channel. Note: P is positive semidefinite, $\operatorname{tr}(P_{ij}) = \delta_{ij}$, $P_{11} + \cdots + P_{nn} = I_n$.

Step 1. Write $P = RR^{\dagger}$, where R is $n^2 \times k$ and k is the rank of P.

イロト 不同 とうほう 不同 とう

An algorithm

Let $C(\Phi) = (P_{ij}) \in M_n(M_n)$ be the Choi matrix of a (unital) channel. Note: P is positive semidefinite, tr $(P_{ij}) = \delta_{ij}$, $P_{11} + \cdots + P_{nn} = I_n$.

Step 1. Write $P = RR^{\dagger}$, where R is $n^2 \times k$ and k is the rank of P.

Step 2. Let $\mathcal{B} = \{H_1, \dots, H_{n^2-1}\}$ be a basis for the real linear space of trace zero Hermitian matrices in M_n , and let

$$K_j = V^{\dagger}(I \otimes H_j)V \in M_r, \qquad j = 1, \dots, N = n^2 - 1.$$

(日本) (日本) (日本)

An algorithm

Let $C(\Phi) = (P_{ij}) \in M_n(M_n)$ be the Choi matrix of a (unital) channel. Note: P is positive semidefinite, tr $(P_{ij}) = \delta_{ij}$, $P_{11} + \cdots + P_{nn} = I_n$.

Step 1. Write $P = RR^{\dagger}$, where R is $n^2 \times k$ and k is the rank of P.

Step 2. Let $\mathcal{B} = \{H_1, \dots, H_{n^2-1}\}$ be a basis for the real linear space of trace zero Hermitian matrices in M_n , and let

$$K_j = V^{\dagger}(I \otimes H_j)V \in M_r, \qquad j = 1, \ldots, N = n^2 - 1.$$

Step 3. Find an $k \times r$ matrix T (with smallest r if possible) such that

 $TT^{\dagger} = I_k$ and $T^{\dagger}K_jT \in M_r$ has zero diagonal entries for $j = 1, \dots, \ell$.

イロン スロン スロン スロン

An algorithm

Let $C(\Phi) = (P_{ij}) \in M_n(M_n)$ be the Choi matrix of a (unital) channel. Note: P is positive semidefinite, tr $(P_{ij}) = \delta_{ij}$, $P_{11} + \cdots + P_{nn} = I_n$.

Step 1. Write $P = RR^{\dagger}$, where R is $n^2 \times k$ and k is the rank of P.

Step 2. Let $\mathcal{B} = \{H_1, \dots, H_{n^2-1}\}$ be a basis for the real linear space of trace zero Hermitian matrices in M_n , and let

$$K_j = V^{\dagger}(I \otimes H_j)V \in M_r, \qquad j = 1, \dots, N = n^2 - 1.$$

Step 3. Find an $k \times r$ matrix T (with smallest r if possible) such that

 $TT^{\dagger} = I_k$ and $T^{\dagger}K_jT \in M_r$ has zero diagonal entries for $j = 1, \dots, \ell$. If such a T exists, then Φ is mixed unitary.

イロト イボト イヨト

• Check whether the Werner-Holevo channel $\Phi: M_n \to M_n$ defined by

$$\Phi(\rho) = \frac{1}{n+1}((\operatorname{tr} \rho)I_n + \rho^t)$$

can be written as a mix (the average) of N = n(n+1)/2 unitary channels.

イロト 不同 とうほう 不同 とう

• Check whether the Werner-Holevo channel $\Phi: M_n \to M_n$ defined by

$$\Phi(\rho) = \frac{1}{n+1}((\operatorname{tr} \rho)I_n + \rho^t)$$

can be written as a mix (the average) of N = n(n+1)/2 unitary channels.

• Equivalently, determine whether there are symmetric unitary matrices $U_1, \ldots, U_N \in M_n$ such that $\operatorname{tr}(U_i^{\dagger}U_j) = 0$ for all $i \neq j$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• Check whether the Werner-Holevo channel $\Phi: M_n \to M_n$ defined by

$$\Phi(\rho) = \frac{1}{n+1}((\operatorname{tr} \rho)I_n + \rho^t)$$

can be written as a mix (the average) of N = n(n+1)/2 unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_1, \ldots, U_N \in M_n$ such that $\operatorname{tr}(U_i^{\dagger}U_j) = 0$ for all $i \neq j$.
- If exists, the set $\{U_1, \ldots, U_N\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in M_n .

・ 同 ト ・ ヨ ト ・ ヨ ト

• Check whether the Werner-Holevo channel $\Phi: M_n \to M_n$ defined by

$$\Phi(\rho) = \frac{1}{n+1}((\operatorname{tr} \rho)I_n + \rho^t)$$

can be written as a mix (the average) of N = n(n+1)/2 unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_1, \ldots, U_N \in M_n$ such that $\operatorname{tr} (U_i^{\dagger} U_j) = 0$ for all $i \neq j$.
- If exists, the set $\{U_1, \ldots, U_N\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in M_n .
- Only confirm for even n and n = 3, 5. Other cases are open.

不得下 イヨト イヨト

• Check whether the Werner-Holevo channel $\Phi: M_n \to M_n$ defined by

$$\Phi(\rho) = \frac{1}{n+1}((\operatorname{tr} \rho)I_n + \rho^t)$$

can be written as a mix (the average) of N = n(n+1)/2 unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_1, \ldots, U_N \in M_n$ such that $\operatorname{tr}(U_i^{\dagger}U_j) = 0$ for all $i \neq j$.
- If exists, the set $\{U_1, \ldots, U_N\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in M_n .
- Only confirm for even n and n = 3, 5. Other cases are open.
- Also, we are using projection methods to find quantum states and quantum channels with special properties such as:

low rank, extreme entropy, having prescribed reduced states, extreme channel capacity, extreme channel complexity, etc.

イロト イボト イヨト イヨト

• Check whether the Werner-Holevo channel $\Phi: M_n \to M_n$ defined by

$$\Phi(\rho) = \frac{1}{n+1}((\operatorname{tr} \rho)I_n + \rho^t)$$

can be written as a mix (the average) of N = n(n+1)/2 unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_1, \ldots, U_N \in M_n$ such that $\operatorname{tr}(U_i^{\dagger}U_j) = 0$ for all $i \neq j$.
- If exists, the set $\{U_1, \ldots, U_N\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in M_n .
- Only confirm for even n and n = 3, 5. Other cases are open.
- Also, we are using projection methods to find quantum states and quantum channels with special properties such as:

low rank, extreme entropy, having prescribed reduced states, extreme channel capacity, extreme channel complexity, etc.

Hope that to tell you more next time.

イロト イポト イヨト イヨト

• Check whether the Werner-Holevo channel $\Phi: M_n \to M_n$ defined by

$$\Phi(\rho) = \frac{1}{n+1}((\operatorname{tr} \rho)I_n + \rho^t)$$

can be written as a mix (the average) of N = n(n+1)/2 unitary channels.

- Equivalently, determine whether there are symmetric unitary matrices $U_1, \ldots, U_N \in M_n$ such that $\operatorname{tr}(U_i^{\dagger}U_j) = 0$ for all $i \neq j$.
- If exists, the set $\{U_1, \ldots, U_N\}$ will form an orthogonal basis for the subspace of complex symmetric matrices in M_n .
- Only confirm for even n and n = 3, 5. Other cases are open.
- Also, we are using projection methods to find quantum states and quantum channels with special properties such as:

low rank, extreme entropy, having prescribed reduced states, extreme channel capacity, extreme channel complexity, etc.

Hope that to tell you more next time.

Thank you for your attention!

・ロト ・ 同ト ・ ヨト ・ ヨト

Э