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Introduction

Mn (Hn): the set of n × n complex (Hermitian) matrices.

Quantum states are represented as density matrices,
i.e., positive semidefinite matrices in Hn in with trace one.

Denote by Dn the set of density matrices in Mn.
A quantum channel (operation) E : Mn → Mn is a trace preserving
completely positive map with the following operator sum representation

E(ρ) = E1ρE †1 + · · ·+ ErρE †r ,

for some E1, . . . ,Er ∈ Mn such that E †1 E1 + · · ·+ E †r Er = In.
The matrices E1, . . . ,Er are the error operators of the channel.
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Quantum error correction code

A subspace V ⊆ Cn is a quantum error correction code for E if there is a
recovery channel R : Mn → Mn such that

R ◦ E(ρ) = ρ whenever range(ρ) ⊆ V.

Here, of course, R(ρ) = R1ρR†1 + · · ·+ RsρR†s for all ρ ∈ Mn,

where R1, . . . ,Rs ∈ Mn satisfying R†1 R1 + · · ·+ R†s Rs = In.

So, we want:

ρ→ Encoding

ρ as ρ̂ → Noisy quantum

channel E
→ Decoding

E(ρ̂)
→ ρ.
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Knill-Laflamme condition

But it is highly non-trivial to determine V (with high dimension if exists).

A quantum channel allowing full recovery, i.e., V = Cn, is a unitary
channel of the form ρ 7→W ρW † for some unitary W .

The recovery channel is the inverse map ρ 7→ W†ρW .

Knill-Laflamme condition
There is an error correction code V of dimension k for E if and only if there is a
unitary U ∈ Mn such that

U†E †i EjU =
[
γij Ik ∗
∗ ∗

]
with γij ∈ C for all i , j ∈ {1, . . . , r},

and V will be spanned by the first k columns of U.
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Fully correlated channels
Denote the Pauli’s matrices by

σ0 = I2, σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A fully correlated channel E on n-qubit states are defined by

E(ρ) = p0(σ0)⊗nρ(σ†0 )⊗n + · · ·+ p3(σ3)⊗nρ(σ†3 )⊗n for any ρ ∈ M2n ,

where p0, p1, p2, p3 are nonnegative numbers summing up to 1.

Note that every ρ ∈ D2n is a linear combination of the product state
ρ1 ⊗ · · · ⊗ ρn with ρ1, . . . , ρn ∈ D2, and

E(ρ1 ⊗ · · · ⊗ ρn) =
∑3

j=0 pj(σjρ1σ
†
j )⊗ · · · ⊗ (σjρnσ

†
j ).

So every qubit of the product state will be affected by the same type of error in the special environment.

Theorem [Li, Nakahara, Poon, Sze, Tomita; 2011]
Suppose E : M2n → M2n is a fully correlated channel.

If n is odd, there is a quantum error correction code of dimension 2n−1.
If n is even, there is a quantum error correction code of dimension 2n−2.
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Implementation
Denote by Xn = σ⊗n

1 ,Yn = σ⊗n
2 ,Zn = σ⊗n

3 .

When n is odd, encode ρ ∈ D2n−1 as ρ̂ = U†(σ ⊗ ρ)U with σ =
[
1 0
0 0

]
.

When n is even, encode ρ ∈ D2n−2 as ρ̂ = U†(σ ⊗ ρ)U with σ = E11 ∈ D4.

In both cases, we have UE(ρ̂)U† = σ̂ ⊗ ρ.

The circuit diagram:
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Remarks

If n = 2k + 1, one pure state can be used to protect 2k qubits of data.

If n = 2k + 2, two pure states can be used to protect 2k qubits of data.
It seems that there is no point to use a fully correlated channel on
n = 2k + 2 qubits in the context of quantum error correction.
Nevertheless, we have the following.

Theorem [Li, Lyles and Poon, 2020]
For the fully correlated channels on n-qubits with error operators Xn,Yn,Zn,
there are efficient error correction schemes.

1 If n = 2k + r with r ∈ {1, 2}, one can use r arbitary qubit to protect 2k
qubits of data.

2 If n = 2k + 2, one can use two pure states to transmit two classical bit of
information in {|00〉, |01〉, |10〉, |11〉} and to protect 2k qubits of quantum
information.

Li, Lyles, Poon, Error correction schemes for fully correlated quantum channels protecting both quantum and

classical information, 18 pages, Quantum Information Processing. https://arxiv.org/pdf/1905.10228.pdf
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Implementation

The scheme was implemented using Matlab, Mathematica, Python, and the
IBM’s quantum computing framework qiskit.
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Note that our scheme is good for multiple times of quantum error correction
without syndrome measurement.
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Experimental results
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Current and further research

Implement our schemes for more qubits using other quantum computers
which are not as noisy as the IBM quantum computers.

Consider other quantum channels, say, the fully correlated quantum
channels on n-qubits with error operators W⊗n for unitary W ∈ M2.

In [C.K. Li, M. Nakahara, Y.T. Poon, N.S. Sze, H. Tomita, 2011] we
used n = 2k + 1 physical qubits protect k logical qubits.

Note that in the above encoding, |u〉 = |0〉 and |v〉 is arbitrary.
The recursive scheme is useful because of its efficiency in encoding and
decoding. We will study whether it can protect classical information.
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The recursive scheme is useful because of its efficiency in encoding and
decoding. We will study whether it can protect classical information.
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Currently, we (Olivia Ding, Cordelia Li, Diane Pelejo, Sage Stanish) are
working on the implementation of the scheme using the IBM quantum
computers.

We need to use 9 “basic” gates, including a Toffoli gate (CCNOT gate),
to do the 3 qubit encoding, and some preliminary results were produced.
To improve the efficiency and reduce the gate error, we try to use the
basic CNOT gates and C-unitary gates (about 45 of them) to build our
3-qubit encoding and decoding operators.
We will see whether there are significant improvement.
Note that the results in [Li, Lyles and Poon, 2020] have been improved.

Hope to tell you more soon.

Thank you for your attention!
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