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Objectives and Recent Progress

Quantum computations/simulations for high energy physics?
Strategy:

big goals with enough intermediate steps
explore as many paths as possible
leave room for serendipity

Tensor tools: QC friends and competitors (RG)
Symmetry preserving truncations (YM, arxiv:1903.01918, PRD
100, 014506 and arxiv preprint in progress)
Abelian Higgs model with cold atoms (PRL 121)
Quantum computations (digital): IBM, IonQ, Rigetti, ...
Real time scattering (PRD 99 094503 with Erik Gustafson and
Judah Unmuth-Yockey; arXiv arXiv:1910.09478 with P. Dreher and
IBM-Q; work in progress with N. Linke trapped ion lab)
Quantum Joule experiments (arXiv:1903.01414, PRA
101.033608, with Jin Zhang and Shan-Wen Tsai)
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Quantum computations/simulations for high energy
physics?

Problems where perturbation theory and classical sampling (Monte
Carlo) are challenged:

Real-time evolution for QCD (-> PDF and GPD)
Jet Physics (crucial for the LHC program)
Finite density QCD (sign problem)
Near conformal systems (BSM, needs very large lattices)
Early cosmology
Strong gravity
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Computing with quantum devices (Feynman 82)?

The number of transistors on a chip
doubled almost every two years for
more than 30 years
At some point, the miniaturization
involves quantum mechanics
Capacitors are smaller but they are
still on (charged) or off (uncharged)
qubits: |Ψ〉 = α|0〉+ β|1〉 is a
superposition of the two possibilities
Can we use quantum devices to
explore large (2Nq )Hilbert spaces?
(Feynman 82)
Yes, if the interactions are localized
(generalization of Trotter product
formula, Lloyd 96)

Figure: Moore’s law, source:
Wikipedia

Figure: Quantum circuit for the
quantum Ising model
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Strategy: many intermediate steps towards big goals

High expectations for quantum computing (QC): new materials,
fast optimization, security, ...
Risk management: theoretical physics is a multifaceted landscape
Lattice gauge theory lesson: big goals can be achieved with small
steps
Example of big goals: ab-initio jet physics, PDF, ...
Examples of small steps: real-time evolution in 1+1 Ising model,
1+1 Abelian Higgs model, Schwinger model, 2+1 U(1) gauge
theory ,....
Many possible paths: quantum simulations (trapped ions, cold
atoms,...), quantum computations (IBM, Rigetti,...)
Small systems are interesting: use Finite Size Scaling (data
collapse, Luscher’s formula,....)

Yannick Meurice (U. of Iowa) QGT with QC March 10 2020 5 / 58



ab initio jet physics : a realistic long term goal?

Pythia, Herwig, and other jet simulation models encapsulate QCD
ideas, empirical observations and experimental data. It is crucial for
the interpretation of collider physics experiments. Could we recover
this understanding from scratch (ab-initio lattice QCD)?
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Lessons from lattice gauge theory

We need to start with something simple!

Figure: Mike Creutz’s calculator used for a Z2 gauge theory on a 34 lattice
(circa 1979).
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Following the “Kogut sequence" for the quantum
theories

Figure: Cover page of J. Kogut RMP 51 (1979).Yannick Meurice (U. of Iowa) QGT with QC March 10 2020 8 / 58



Goals of the lectures

Introduce lattice models with continuous Abelian symmetries:
U(1) gauge theory and O(2) spin model (section VI and VII in the
“Kogut ladder"). Note: these two models can be combined in the
Abelian Higgs model.
Reformulate these models with the tensor method and provide a
completely discrete and gauge-invariant Hamiltonian formulation
using the transfer matrix.
Show the equivalence to gauge-fixing in the temporal gauge
A0 = 0 (we can recover Gauss’s law).
Discuss implementation with quantum computers (Ising versions)
and cold atom ladders (spin-2 approximation for the Abelian Higgs
model).
If time permits: phase shifts, geometrical correspondence
between the lattice equations of motion and the discrete Noether
equations (selection rules for tensors), topological sectors in the
continuum limit.
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Discretization of problems intractable with classical
computing
Quantum computing (QC) requires a complete discretization of QFT

Discretization of space: lattice gauge theory formulation
Discretization of field integration: tensor methods for compact
fields (as in Wilson lattice gauge theory and nonlinear sigma
models, the option followed here)
QC methods for scattering in φ4 (non-compact) theories are
discussed by JLP (Jordan Lee Preskill)
JLP argue that QC is necessary because of the asymptotic nature
of perturbation theory (PT) in λ for φ4 and propose to introduce a
field cut (but this makes PT convergent! YM PRL 88 (2002))
Non compact fields methods (λφ4) see: Macridin, Spentzouris,
Amundson, Harnik, PRA 98 042312 (2018) (fermions+bosons)
and Klco and Savage arXiv:1808.10378 and 1904.10440.
In the following we focus on compact fields.
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Important ideas of the tensor reformulation

In most lattice simulations, the variables of integration are
compact and character expansions (such as Fourier series) can
be used to rewrite the partition function and average observables
as discrete sums of contracted tensors. (Pontryagin duality,
Peter-Weyl theorem).
The “hard" integrals are done exactly and then field integrations
provide Kronecker deltas. Example: the O(2) model (In : Bessel)

eβ cos(θi−θj ) =
+∞∑

nij=−∞
einij (θi−θj )Inij (β)

This reformulations have been used for RG blocking but they are
also suitable for quantum computations/simulations when
combined with truncations.
Important features:

Truncations do not break global symmetries
Standard boundary conditions can be implemented
Matrix Product State ansatzs for operators are exact
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From compact to discrete
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Preview: the Compact Abelian Higgs Model CAHM

ZCAHM =
∏

x

∫ π

−π

dϕx

2π

∏
x ,µ

∫ π

−π

dAx ,µ

2π
e−Sgauge−Smatter ,

Sgauge = βpl.
∑

x ,µ<ν

(1− cos(Ax ,µ + Ax+µ̂,ν − Ax+ν̂,µ − Ax ,ν)),

Smatter = βl.
∑
x ,µ

(1− cos(ϕx+µ̂ − ϕx + Ax ,µ)).

The CAHM is a gauged version of the O(2) model where the global
symmetry under a ϕ shift becomes local

ϕ′x = ϕx + αx

and these local changes in Smatter are compensated by the gauge field
changes

A′x ,µ = Ax ,µ − (αx+µ̂ − αx ),

which also leave Sgauge invariant.
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Pure gauge and spin-model limits

The matter fields can be decoupled by simply setting βl. = 0. As they
don’t appear in the action, their integration yields a factor 1 and we are
left with the pure gauge (PG) U(1) lattice model with partition function

ZPG =
∏
x ,µ

∫ π

−π

dAx ,µ

2π
e−Sgauge .

The decoupling of the gauge fields is less straightforward. Strictly
speaking, the O(2) spin model is obtained by removing the gauge
fields introduced to make the global symmetry a local one and the
partition function of the O(2) model reads

ZO(2) =
∏

x

∫ π

−π

dϕx

2π
e−SO(2) ,

with
SO(2) = βl.

∑
x ,µ

(1− cos(ϕx+µ̂ − ϕx )).
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Clock and Ising versions

In the 3 models discussed ϕx and Ax ,µ are continuous angles with
the compact identification 0 ∼ 2π (circle).
We can also have discrete “clock" versions where ϕx and Ax ,µ
take only q values

0,
2π
q
,2

2π
q
, . . . , (q − 1)

2π
q

These can be seen as approximations of the U(1) model or just
for their own sake
The Ising case is of special interest (qbits) and usually kept in
multiplicative notation (σ = ±1)
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After Fourier transform, all the models can be
represented with discrete states (D = 2)

Figure: The red and blue dots carry integer quantum numbers. Ising: 0,1;
spin-2 approximation of U(1): -2,-1,0,1,2

Yannick Meurice (U. of Iowa) QGT with QC March 10 2020 16 / 58



After Fourier transform, all the models can be
represented with discrete states (D = 3)

Figure: The red and blue dots carry integer quantum numbers
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"Profound messages"

Tensorial truncations are compatible with the general identities
derived from the symmetries of these models (universal properties
of these models can be reproduced with highly simplified
formulations desirable for implementations with quantum
computers or for quantum simulations experiments. Y. M.,
PHYSICAL REVIEW D 100, 014506 (2019))
There is a geometrical analogy between the lattice equations of
motion and the selection rules of the tensor formulation
Noether theorem: for each symmetry there is a corresponding
tensor redundancy (and we can "gauge fix" the corresponding
integration variable)
arxiv xxxxx: We discuss the transfer matrix in the gauge-invariant
tensor reformulation of lattice . We show the equivalence to a
gauge-fixed version in a maximal temporal gauge and explain how
Gauss’s law is enforced. We discuss semi-classical
approximations and their weak coupling correspondence for the
solvable cases.
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Quantum circuit for the quantum Ising model

Quantum circuit with 3 Trotter steps ( arXiv:1901.05944 E. Gustafson,
YM and J. Unmuth-Yockey, PRD 99 094503)

Figure: Quantum circuit corresponding to the Trotter steps (in the σx basis).
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Trotter Fidelity

Figure: fidelity of Trotter operator at multiple different Trotter steps for (left to
right) expansion and scattering with open boundary conditions (E. Gustafson,
YM and J. Unmuth-Yockey arXiv:1901.05944, PRD 99 094503)
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Systematic and statistical errors
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Optical lattice implementation of the compact Abelian
Higgs Model with a physical ladder(PRL 121, 223201)
After taking the time continuum limit:

H̄ =
Ũg

2

∑
i

(
L̄z
(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))
2 − X̃

∑
i

L̄x
(i)

Figure: Ladder with one atom per rung: tunneling along the vertical direction,
no tunneling in the the horizontal direction but short range attractive
interactions. A parabolic potential is applied in the spin (vertical) direction.
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Nuts and Bolts

1 Path integral and Euclidean time
2 Classical gauge-invariance and Gauss’s law
3 Lattice models (spin and gauge)
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1. The path integral (Overview)

The path integral (R. Feynman) is a way to rewrite the quantum
evolution as a sum over paths joining some initial and final positions xi
and xf weighted by eiS/~ where S is the action corresponding to a
specific path joining xi and xf . (

∫
[Dx]xi→xf :“sum over the paths")

〈xf |e−i(tf−ti )Ĥ/~|xi〉 =

∫
[Dx]xi→xf e

iS[x]/~,

Figure: Example of a “path".
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Small step evolution

First express e−i(tf−ti )Ĥ/~ as a product of Nt short evolutions by time
steps at with Ntat = (tf − ti) and then inserting the identity∫

dx|x〉〈x|

between each of the successive steps.

〈xf |e−i(tf−ti )Ĥ/~|xi〉 = (1)∫
dxNt−1· · ·

∫
dx1〈xf |e−iat Ĥ/~|xNt−1〉 . . . 〈x2|e−iat Ĥ/~|x1〉〈x1|e−iat Ĥ/~|xi〉.

The point of using small time steps is that in this limit, the evolution
operator matrix elements can be approximated by phases which will
contribute to an overall eiS/~ factor. The product of integrals∫

dxNt−1· · ·
∫

dx1,

has a “sum over the paths" interpretation
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Euclidean time

It is convenient to think of the time parameter as a complex
number and to use the Euclidean time τ (Wick rotation)

(tf − ti)→ −iτ.

The use of Euclidean time does not affect the spectrum of Ĥ.

For large positive τ , e−τ Ĥ makes the contributions of the high
energy states negligible.
Euclidean time in the path integral brings the substitution

eiS/~ → e−S/~.

This positive Boltzmann weight allows to use importance sampling
methods developed in statistical mechanics (Monte Carlo).
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2. Classical gauge invariance and Gauss’s law. Sign
conventions for Maxwell’s fields (c = 1 units)

gµν = diagonal(+−−−)
Aµ : (φ,+A)
∂µ : (∂/∂t ,+∇)
� = ∂µ∂

µ

F i0 = E i

F ij = −εijkBk (D = 4)
F 12 = −B (D = 3)

These are consistent with the standard D − 1-vector form:

E = −∇φ− Ȧ,

for any D, and the dimension-dependent relations

∇× A =

{
B (D = 4)

B (D = 3).
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Manifestly relativistic form of Maxwell’s equations

The basic object is the antisymmetric field-strength tensor

Fµν = ∂µAν − ∂νAµ.

In MKSA units, the Lagrangian density is

LMaxwell = −(1/4)FµνFµν − µ0JµAµ.

The action is S =
∫

d4xLMaxwell .

Requiring δS = 0 yields Maxwell’s equations with charge and currents

∂µFµν = µ0Jν .

If we identify F 0i = −E i/c, F ij = −εijkBk , J0 = ρc, A0 = φ/c while the
3-vectors of Jµ and Aµ are the usual currents J and potentials A,we
recover ∇× B = µ0(J + ε0Ė) and ∇ · E = ρ/ε0 with µ0ε0 = 1/c2.
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Dual equations in D-dimensions (c = 1 units).

Fµν can be defined in arbitrary space-time dimensions D

The identification of the electric field F 0i = −E i remains valid for any D.

The identification of the magnetic field is D-dependent.
D = 2: no magnetic field
D = 3 it is just a parity odd (pseudo)scalar density: B = F 21

The homogeneous Maxwell equations are D-dependent.

For D = 4, we can define a dual tensor

F̃µν ≡ 1
2
εµνρσFρσ = εµνρσ∂ρAσ,

where εµνρσ is the totally antisymmetric Levi-Civita tensor (ε0123 = +1).
Since two gradients commute,

∂µF̃µν = 0

Exercises: Check that this equation implies Ḃ = −∇× E and
∇ · B = 0. Consider D = 3 with F̃µ ≡ 1

2ε
µρσFρσ.
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Gauge invariance in classical electrodynamics

The description of the E and B fields in terms of Aµ is not one to one.
The gauge transformation

Aµ → Aµ − ∂µα

leaves Fµν unchanged.
For a manifestly relativistic formulation, the Lorenz gauge

∂µAµ = 0,

is Lorentz-invariant and plays a special role (the two last names are
very similar but different). The Lorenz gauge condition has a residual
invariance: under a gauge transformation

∂µAµ → −�α,

has no effect if α is a solution of the massless Klein-Gordon equation.
In the Lorenz gauge, Maxwell equations with charges and currents are
simply

�Aν = µ0Jν .
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Sourceless solutions in the Lorenz gauge

Aµ(x) = εµ(p) exp(−ip · x),

with the condition pµpµ = 0. The Lorenz gauge condition implies that

pµεµ(p) = 0.

The residual gauge symmetry allows:

εµ(p)→ εµ(p) + λpµ,

and we are left with D − 2 transverse polarizations. As an example in
D = 4, if pµ represents the motion in the z direction (E ,0,0,E), the
polarization εµ can be linear combinations of (1,0,0,1), (0,1,0,0) and
(0,0,1,0). The first possibility can be eliminated with the residual
gauge transformation and we are left with two transverse polarizations
ε1 and ε2. After this is done, we end up with a plane wave solution
satisfying the conditions A0 = 0 and ∇ · A = 0.
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Gauge fixing term

It is possible to add a gauge symmetry breaking term

Lgsb = −λ
2

(∂µAµ)2

With this extra term, the equations of motion become

�Aν + (λ− 1)∂ν(∂µAµ) = µ0Jν .

By picking λ = 1, we recover

�Aν = µ0Jν .

This choice is called the “Feynman gauge".
Physical processes should not depend on λ
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The Hamiltonian formalism for Maxwell’s gauge fields

The time derivative of A0 does not appear in LMaxwell and the
canonically conjugate momentum is naively zero, but the variation of
A0 is needed to obtain the equation of motion (in absence of sources):

∂µFµ0 = 0,

which in any dimensions is equivalent to Gauss’s law

∇ · E = 0.

With a symmetry breaking term

LMGF = −(1/4)FµνFµν − λ

2
(∂µAµ)2,

This introduces terms including the time derivative of A0.
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Conjugate momenta

∂LMGF

∂Ȧ
= Ȧ + ∇A0 = −E ≡ π,

and
∂LMGF

∂Ȧ0
= −λ∂µAµ ≡ π0.

We can eliminate the time derivatives using the conjugate momenta:

Ȧ = π −∇A0, (2)

Ȧ0 = −π
0

λ
−∇ · A. (3)
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Hamiltonian density

HMGF = π · Ȧ + π0Ȧ0 − LMGF

After eliminating the time derivatives, we obtain for D = 4

HMGF =
1
2
π · π +

1
2

B · B− π ·∇A0 − 1
2λ

(π0)2 − π0∇ · A.

π = −E (any D); B = ∇× A (D = 4);
A and π are conjugate variables (like x and p)
For D = 3, we just replace B · B by B2.
For D = 2, there is no magnetic field.

Hamilton equations.

Ȧ =
∂HMGF

∂π
= π −∇A0.

This just the definition of the electric field in terms of the potentials.
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Hamilton equations. (continued)

The second Hamilton equation is dimension dependent.
For D = 4, we have

π̇ = −∂H
MGF

∂A
= −∇× B−∇π0.

Maxwell equation involving the current j (set to zero)
but with an extra term −∇π0.

For D = 2 this Maxwell equation reads Ėx = 0.

For D = 3 we have Ėx = ∂
∂y B and Ėy = − ∂

∂x B

For D = 4, we have the usual form Ė = ∇× B.
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Hamilton’s equations for A0

Ȧ0 =
∂HMGF

∂π0 = −π
0

λ
−∇ · A,

(relation between velocities and momenta used to transition from
Lagrangian to Hamiltonian: π0 = −λ(∂µAµ)).

π̇0 = −∂H
MGF

∂A0 = −∇ · π = ∇ · E.

This is Gauss’s law (∇ · E = 0) with an extra term π̇0.

We recover Maxwell equations if we impose π0 = 0 or equivalently the
Lorenz condition ∂µAµ = 0.

The quantization of the classical model using an Hilbert space of
particles carrying momenta and polarization is non-trivial (see
Weinberg, The Quantum Theory of Fields I). It is much simpler in the
path integral formalism.
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Euclidean time

Minkowskian Euclidean
t -iτ

e−itH e−τH

gµν δµν

dDx −idDxE
x x
∇ ∇
A A
B B
φ −iAD

∂EM
∂t −∂EE

∂τ

The last two lines of the table require some explanations.
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Euclidean signs

At Euclidean time, we keep the Minkowskian definition of the field
strenght tensor

Fµν = ∂µAν − ∂νAµ,

but all the indices can be raised or lowered without changing the sign.
We define

E j
E = F jD

E ,

which should transform like ∂/∂t → i∂/∂τ under t → −iτ . This can be
accomplished with φ→ −iAD because we can lower the index of the
spatial index without changing the sign as done in Minkowski space.
As we keep the standard relation ∇× A = B which involves only
3-vectors, we have for the same reason

F jk
E = +εjklBl

E .

With these definitions, the sign in Maxwell equation changes.

ĖE = −∇× BE .
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3. Lattice quantization of spin and gauge models

Euclidean time: treat space and time on the same footing.

We discretize space and time using a D-dimensional (hyper) cubic
Euclidean lattice. For instance, for D = 2, we use a square lattice.
The sites are denoted x = (x1, x2, . . . xD), with xD = τ , the Euclidean
time direction. In lattice units, the space-time sites are labelled with
integers x

a = n11̂ + · · ·+ nDD̂, where n1 . . . ,nD are integers and
1̂, . . . , D̂ units vectors in the the D positive directions.
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Notations

The links between two nearest neighbor lattice sites x and x + µ̂ are
labelled by (x , µ) and the plaquettes delimited by four sites x , x + µ̂,
x + µ̂+ ν̂ and x + ν̂ are labelled by (x , µ, ν). By convention, we start
with the lowest index when introducing a circulation at the boundary of
the plaquette as shown in Fig. 11.

Figure: Plaquette associated with (x , µ, ν).

The total number of sites is denoted V . Unless specified periodic
boundary conditions are assumed. They preserve a discrete
translational symmetry.
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Spin models

Euclidean Lagrangian density for N real scalar fields with a O(N)
global symmetry.

LO(N)
Euclidean =

1
2
∂µ~φ · ∂ν~φδµν + λ(~φ · ~φ− v2)2,

with ~φ a N-dimensional vector.
The potential has degenerate minima on a N − 1-dimensional
hyper-sphere SN−1 and a local maximum at ~φ = 0.
For N = 2, the potential has the following shape

Yannick Meurice (U. of Iowa) QGT with QC March 10 2020 45 / 58



Nambu-Goldstone and Brout-Englert-Higgs modes

The degenerate minima form a circle at the very bottom.
We can study the small fluctuations about a given minimum on the
circle. Note that the choice of a minimum breaks the O(2)
symmetry.
There are “soft" fluctuations along the circle (Nambu-Goldstone
modes) that somehow restore the symmetry and "hard"
fluctuations in the radial direction (Brout-Englert-Higgs modes).
We can extend this analysis for arbitrary N.
In the large λ limit we obtain a Lagrangian which is just the kinetic
term to be supplemented with the constraint that ~φ · ~φ = v2

everywhere. This keeps the NG modes and decouples the BEH
mode.
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Spin models

Euclidean action for the NG modes on a D-dimensional lattice with
isotropic lattice spacing a

SE =
1
2

∑
x ,µ

aD−2(~φx+µ̂ − ~φx ) · (~φx+µ̂ − ~φx ).

The constraint ~φx · ~φx = v2 can be expressed by introducing unit
vectors: ~φx = v~σx such that

~σx · ~σx = 1.

Redefining aD−2v2 ≡ β, we get the simple action

S = β
∑
x ,µ

(1− ~σx+µ̂ · ~σx ).

These models are often called spin models or nonlinear sigma models.
The case N = 1 is the well-known Ising model with σx = ±1.
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Terminology

The case N = 1 is the well-known Ising model with σx = ±1.
For N = 2, the terminology O(2)-model, “planar model" or “classical
XY model" is common. If we use the circle parametrization

σ1
x = cos(ϕx ), and σ2

x = sin(ϕx ),

then
~σx+µ̂ · ~σx = cos(ϕx+µ̂ − ϕx ).

For N = 3, the symmetry becomes non-Abelian and the model is
sometimes called the “classical Heisenberg model".
In the large-N limit, the model becomes solvable if we take limit in such
a way that N/β(N) = λt remains constant.
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Complex generalizations and local gauge invariance

IO(2) model using the complex form Φx = eiϕx . Droping the constant
term, the O(2) action reads

S = −β
2

∑
x ,µ

(Φ?
x Φx+µ̂ + h.c) = −β

∑
x ,µ

cos(ϕx+µ̂ − ϕx ).

The O(2) model has a global symmetry ϕx → ϕx + α. With the
complex notation, this transformation becomes Φx → eiαΦx . We would
like to promote this symmetry to a local one

Φx → eiαx Φx .

This can be achieved by inserting a phase Ux ,µ between Φ?
x and Φx+µ̂

which transforms like

Ux ,µ → eiαx Ux ,µe−iαx+µ̂ .
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Non-Abelian generalizations

The procedure can be extended for arbitrary N-dimensional complex
vectors Φx with a local transformation involving a U(N) matrix Vx :

Φx → VxΦx

In addition, we introduce U(N) matrices Ux ,µ̂ transforming like

Ux ,µ̂ → VxUx ,µ̂V †x+µ̂.

The action
S = −β

2

∑
x ,µ

(Φ†xUx ,µ̂Φx+µ̂ + h.c) =

has a local U(N) gauge invariance. By taking the product of a set of
Ux ,µ attached to the links of closed loops, we can construct
gauge-invariant quantities.
Replacing Φx by a SU(N) matrix Ux we get the principal chiral model.

S = −β
2

∑
x ,µ

[
tr
[
U†x+µ̂Ux

]
+ h.c.

]
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Pure gauge theories

If we consider two successive links in positive directions, then the local
transformation in the middle site cancel and

Ux ,µUx+µ̂,ν → VxUx ,µUx+µ̂,νV †x+µ̂+ν̂ .

If the second link goes in the negative direction, we use the Hermitian
conjugate and a similar property holds

Ux ,µU†x+µ̂−ν̂,ν → VxUx ,µU†x+µ̂−ν̂,νV †x+µ̂−ν̂ .

We can pursue this process for an arbitrary path connecting x to some
xfinal . The transformation on the right will be V †xfinal

. If we close the path
and take the trace, we obtain a gauge-invariant quantity. We call these
traces of products of gauge matrices over closed loops “Wilson loops".
In the case where the loop goes around the imaginary time direction,
we call it a “Polyakov loop"
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Wilson action (non-Abelian)

On a square, cubic or hypercubic lattice, the smallest path that give a
non-trivial Wilson loop is a square. We call this square a plaquette.
Claude Itzykson coined this terminology after Ken Wilson’s seminar in
Orsay in 1973. We explained that a plaquette is specified by (x , µ, ν).
The corresponding matrix is

Uplaquette = Ux ,µ,ν = Ux ,µUx+µ̂,νU†x+ν̂,µU†x ,ν

The simplest gauge-invariant lattice model has an action, called
Wilson’s action:

SWilson = β
∑

(x ,µ,ν)

(1− 1
2N

(Tr Ux ,µ,ν + h.c))

Yannick Meurice (U. of Iowa) QGT with QC March 10 2020 52 / 58



Wilson action (Abelian)

In the Abelian case (N = 1), the matrix reduces to a phase

Ux ,µ = eiAx,µ ,

and there is no need to take the trace. Ax ,µ is called the gauge field.
The Abelian action reads

SAbelian = β
∑

x ,µ<ν

(1− cos(Ax ,µ + Ax+µ̂,ν − Ax+ν̂,µ − Ax ,ν)).

Under gauge transformation, the gauge field transformation is

Ax ,µ → Ax ,µ + αx − αx+µ̂

In the Ising case, we have σx ,µ = ±1 at every link and the action reads

SIsing = β
∑

x ,µ<ν

(1− σx ,µσx+µ̂,νσx+ν̂,µσx ,ν).
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Compact Abelian Higgs Model CAHM

ZCAHM =
∏

x

∫ π

−π

dϕx

2π

∏
x ,µ

∫ π

−π

dAx ,µ

2π
e−Sgauge−Smatter ,

Sgauge = βpl.
∑

x ,µ<ν

(1− cos(Ax ,µ + Ax+µ̂,ν − Ax+ν̂,µ − Ax ,ν)),

Smatter = βl.
∑
x ,µ

(1− cos(ϕx+µ̂ − ϕx + Ax ,µ)).

The CAHM is a gauged version of the O(2) model where the global
symmetry under a ϕ shift becomes local

ϕ′x = ϕx + αx

and these local changes in Smatter are compensated by the gauge field
changes

A′x ,µ = Ax ,µ − (αx+µ̂ − αx ),

which also leave Sgauge invariant.
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The matter fields can be decoupled by simply setting βl. = 0. As they
don’t appear in the action, their integration yields a factor 1 and we are
left with the pure gauge (PG) U(1) lattice model with partition function

ZPG =
∏
x ,µ

∫ π

−π

dAx ,µ

2π
e−Sgauge .

The decoupling of the gauge fields is less straightforward. Strictly
speaking, the O(2) spin model is obtained by removing the gauge
fields introduced to make the global symmetry a local one and the
partition function of the O(2) model reads

ZO(2) =
∏

x

∫ π

−π

dϕx

2π
e−SO(2) ,

with
SO(2) = βl.

∑
x ,µ

(1− cos(ϕx+µ̂ − ϕx )).
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Character expansions

From the point of view of quantum computing, we see that using
compact fields for models with Abelian symmetries guarantees that we
have a discrete set of states. For functions over the multiplicative
group σ = ±1, we will need

exp(βσ) = cosh(β) + σ sinh(β).

Another useful formula is the Fourier expansion

exp(β cos(θ)) =
+∞∑

n=−∞
In(β) exp(inθ),

where In(β) is the modified Bessel function of order n. Generalizations
of Pontryagin duality to compact non-Abelian groups appear in the
Peter-Weyl theorem. This will translate into expansions in spherical
harmonics in the following. The elegance and practical implications of
having compact fields suggest that we should try to identify physical
signatures of compactness that could allow us to tested this hypothesis
experimentally. This is a subject of study for the future.
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Ising model

For the Ising model, at each link (x , µ) coming out of x in the positive
µ-th direction, we use the expansion (56)

eβσx+µ̂σx = cosh(β)
∑

nx,µ=0,1

[σx+µ̂
√

tanh(β)σx
√

tanh(β) ]nx,µ ,

This attaches an index nx ,µ at each link (x , µ). It is then possible to pull
together various (

√
tanh(β)σx )n and sum over σx . Using∑

σ=±1

σn = 2δ(mod [n,2]),

we can rewrite the partition function as the trace of a tensor product:

Z = (cosh(β))VDTr
∏

x

T (x)
(nx−1̂,1,nx,1,...,nx,D)

.

The local tensor T (x) has 2D indices.
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Tensor explicit form

T (x)
(nx−1̂,1,nx,1,...,nx−D̂,D ,nx,D)

= (4)√
tnx−1̂,1

tnx,1 , . . . , tnx−D̂,D
tnx,D × δ(mod [nx ,out − nx ,in,2]),

with the definitions

tn ≡ (tanh(β))n

nx ,in ≡
∑
µ

nx−µ̂,µ (5)

nx ,out ≡
∑
µ

nx ,µ,

where the sums over µ run from 1 to D.
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