Quantum Gauge Theories with Quantum Computers Part 1

Yannick Meurice

The University of Iowa
yannick-meurice@uiowa.edu
Lectures given at JLab
Supported by the Department of Energy under Award Numbers DOE grants DE-SC0010113, and DE-SC0019139

March 102020

Objectives and Recent Progress

- Quantum computations/simulations for high energy physics?
- Strategy:
- big goals with enough intermediate steps
- explore as many paths as possible
- leave room for serendipity
- Tensor tools: QC friends and competitors (RG)
- Symmetry preserving truncations (YM, arxiv:1903.01918, PRD 100, 014506 and arxiv preprint in progress)
- Abelian Higgs model with cold atoms (PRL 121)
- Quantum computations (digital): IBM, IonQ, Rigetti, ...
- Real time scattering (PRD 99094503 with Erik Gustafson and Judah Unmuth-Yockey; arXiv arXiv:1910.09478 with P. Dreher and IBM-Q; work in progress with N. Linke trapped ion lab)
- Quantum Joule experiments (arXiv:1903.01414, PRA 101.033608, with Jin Zhang and Shan-Wen Tsai)

Quantum computations/simulations for high energy physics?

Problems where perturbation theory and classical sampling (Monte Carlo) are challenged:

- Real-time evolution for QCD (-> PDF and GPD)
- Jet Physics (crucial for the LHC program)
- Finite density QCD (sign problem)
- Near conformal systems (BSM, needs very large lattices)
- Early cosmology
- Strong gravity

Computing with quantum devices (Feynman 82)?

- The number of transistors on a chip doubled almost every two years for more than 30 years
- At some point, the miniaturization involves quantum mechanics
- Capacitors are smaller but they are still on (charged) or off (uncharged)
- qubits: $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is a superposition of the two possibilities
- Can we use quantum devices to explore large $\left(2^{N_{q}}\right)$ Hilbert spaces? (Feynman 82)
- Yes, if the interactions are localized (generalization of Trotter product formula, Lloyd 96)

Figure: Moore's law, source: Wikipedia

Figure: Quantum circuit for the quantum Ising model

Strategy: many intermediate steps towards big goals

- High expectations for quantum computing (QC): new materials, fast optimization, security, ...
- Risk management: theoretical physics is a multifaceted landscape
- Lattice gauge theory lesson: big goals can be achieved with small steps
- Example of big goals: ab-initio jet physics, PDF, ...
- Examples of small steps: real-time evolution in 1+1 Ising model, $1+1$ Abelian Higgs model, Schwinger model, 2+1 U(1) gauge theory ,....
- Many possible paths: quantum simulations (trapped ions, cold atoms,...), quantum computations (IBM, Rigetti,...)
- Small systems are interesting: use Finite Size Scaling (data collapse, Luscher's formula,....)

ab initio jet physics : a realistic long term goal?

Pythia, Herwig, and other jet simulation models encapsulate QCD ideas, empirical observations and experimental data. It is crucial for the interpretation of collider physics experiments. Could we recover this understanding from scratch (ab-initio lattice QCD)?

Lessons from lattice gauge theory

We need to start with something simple!

Figure: Mike Creutz's calculator used for a Z_{2} gauge theory on a 3^{4} lattice (circa 1979).

Following the "Kogut sequence" for the quantum theories

An introduction to lattice gauge theory and spin systems*
John B. Kogut

 relativsic field theory at a criticil point oca lattice theory are illastraed in a thoroupt discossion of the

 simple terms The diraction of preenitidy recearel is triefly reviewed.

CONTENTS

C. The plamar model ta the periodio Cauesten D. Henormalluation group analysse and the theoNon ${ }^{\text {ry' }} \mathrm{C}$ critical region
Non-Abolian Lattice Theorice
A. General formalation of tee sul2 theory

IX. F. Frarthy Connmeats
Aoknowleden

Refercocers
I. INTRODUCTION-AN OVERVIEW OF THIS ARTICLE This article consists of a series of introductory lec
tures on lattice pauge theory and spin syatems. It is istended to explain some of the essentials of these sub. jects to studento interested the tield and revearch
physicista whose expertise lies in other domains. The export in lattice gauge theory will find little new in the following pages aside from the author's personal peris informal, The article grew out of a prif esentation graduate courge on lattice phereics prenented at the Univeraity of Illinoie during the fall semeator of 1078 . Latice spin aystems aro familiar to most phycieter oratory. These systams are of conelderable in tabthese lectares, bat we shall also be irterested in more abstract questions. In particular, we shall be uxing space-ume lattices as a technical device to define cutto construct solatioas of cutorf theories so that tield is theories defined in real contiauun minkowski spacetime can be understood. The hattice is mere scatfold
ing - an inter mediate step used to analyze a difficult isedam. Different lattice formulations of degrees of
III. The Transfer Matrix-Field Theory and Statistical Mechanics
A. General remarks
B. The path integral and transfer matrix of the simple harmonic oscillator

664
C. The transfer matrix for field theories 666
IV. The Two-Dimensional Ising Model
A. Transfer matrix and τ-continuum formulation 669
B. Self-duality of the Ising model
C. Strong coupling expansions for the mass gap, weak coupling expansions for the magnetization
D. Kink condensation and disorder 676
E. Self-duality of the isotropic Ising model 677
F. Exact solution of the Ising model in two di- mensions 678
V. Wegner's Ising Lattice Gauge Theory 681
A. Global symmetries, local symmetries, andthe energetics of spontaneous symmetrybreaking
B. Constructing an Ising model with a local symmetry
C. Elitzur's theorem-the impossibility of spontaneously breaking a local symmetry
D. Gauge-invariant correlation functions
E. Quantum Hamiltonian and phases of the three- dimensional Ising gauge theory 686
VI. Abelian Lattice Gauge Theory 689
A. General formulation 689
B. Gauge-invariant correlation functions, physic- al interpretations, and phase diagrams 690
C. The quantum Hamiltonian formulation and quark confinement 694
VII. The Planar Heisenberg Model in Two Dimensions 696
A. Introductory comments and motivation 696
B. The physical picture of Kosterlitz and Thouless

Goals of the lectures

- Introduce lattice models with continuous Abelian symmetries: $U(1)$ gauge theory and $O(2)$ spin model (section VI and VII in the "Kogut ladder"). Note: these two models can be combined in the Abelian Higgs model.
- Reformulate these models with the tensor method and provide a completely discrete and gauge-invariant Hamiltonian formulation using the transfer matrix.
- Show the equivalence to gauge-fixing in the temporal gauge $A_{0}=0$ (we can recover Gauss's law).
- Discuss implementation with quantum computers (Ising versions) and cold atom ladders (spin-2 approximation for the Abelian Higgs model).
- If time permits: phase shifts, geometrical correspondence between the lattice equations of motion and the discrete Noether equations (selection rules for tensors), topological sectors in the continuum limit.

Discretization of problems intractable with classical computing

Quantum computing (QC) requires a complete discretization of QFT

- Discretization of space: lattice gauge theory formulation
- Discretization of field integration: tensor methods for compact fields (as in Wilson lattice gauge theory and nonlinear sigma models, the option followed here)
- QC methods for scattering in ϕ^{4} (non-compact) theories are discussed by JLP (Jordan Lee Preskill)
- JLP argue that QC is necessary because of the asymptotic nature of perturbation theory (PT) in λ for ϕ^{4} and propose to introduce a field cut (but this makes PT convergent! YM PRL 88 (2002))
- Non compact fields methods $\left(\lambda \phi^{4}\right)$ see: Macridin, Spentzouris, Amundson, Harnik, PRA 98042312 (2018) (fermions+bosons) and Klco and Savage arXiv:1808.10378 and 1904.10440.
- In the following we focus on compact fields.

Important ideas of the tensor reformulation

- In most lattice simulations, the variables of integration are compact and character expansions (such as Fourier series) can be used to rewrite the partition function and average observables as discrete sums of contracted tensors. (Pontryagin duality, Peter-Weyl theorem).
- The "hard" integrals are done exactly and then field integrations provide Kronecker deltas. Example: the $O(2)$ model (I_{n} : Bessel) $\mathrm{e}^{\beta \cos \left(\theta_{i}-\theta_{j}\right)}=\sum_{n_{i j}=-\infty}^{+\infty} \mathrm{e}^{i n_{j j}\left(\theta_{i}-\theta_{j}\right)} I_{n_{i j}}(\beta)$
- This reformulations have been used for RG blocking but they are also suitable for quantum computations/simulations when combined with truncations.
- Important features:
- Truncations do not break global symmetries
- Standard boundary conditions can be implemented
- Matrix Product State ansatzs for operators are exact

From compact to discrete
O(2) model

$$
\begin{gathered}
Z=\prod_{x} \int_{-\pi}^{\pi} d \theta_{x} e^{\beta \sum_{\substack{\text { xxy } \\
\text { Lnerarat } \\
\text { neijhbor }}} \cos \left(\theta_{x}-\theta_{y}\right)}=I_{0}^{V}(\beta) T_{r} \prod_{\substack{n \\
n_{m} \cdot-3}} T_{n_{x} n_{x}^{\prime} m_{x} m_{x}^{\prime}}^{(x)} \\
e^{\beta \cos \left(\theta_{x}-\theta_{y}\right)}=\sum_{n_{x y}} e^{i n_{x y}\left(\theta_{x}-\theta_{y}\right)} I_{n_{x y}}(\beta)
\end{gathered}
$$

continuous compact

disnete

infinite

$$
T_{n n^{\prime} m m^{\prime}}=\sqrt{t_{n} t_{n} t_{m} t_{m^{\prime}}} \delta_{n+m, n^{\prime}+m^{\prime}}
$$

$$
t_{n}=\operatorname{In}(\beta) L_{0}(\beta)
$$

Preview: the Compact Abelian Higgs Model CAHM

$$
\begin{gathered}
Z_{C A H M}=\prod_{x} \int_{-\pi}^{\pi} \frac{d \varphi_{x}}{2 \pi} \prod_{x, \mu} \int_{-\pi}^{\pi} \frac{d A_{x, \mu}}{2 \pi} e^{-S_{g a u g e}-S_{\text {matter }}} \\
S_{\text {gauge }}=\beta_{p l} . \sum_{x, \mu<\nu}\left(1-\cos \left(A_{x, \mu}+A_{x+\hat{\mu}, \nu}-A_{x+\hat{\nu}, \mu}-A_{x, \nu}\right)\right) \\
S_{\text {matter }}=\beta_{l /} \sum_{x, \mu}\left(1-\cos \left(\varphi_{x+\hat{\mu}}-\varphi_{x}+A_{x, \mu}\right)\right)
\end{gathered}
$$

The CAHM is a gauged version of the $O(2)$ model where the global symmetry under a φ shift becomes local

$$
\varphi_{x}^{\prime}=\varphi_{x}+\alpha_{x}
$$

and these local changes in $S_{\text {matter }}$ are compensated by the gauge field changes

$$
A_{x, \mu}^{\prime}=A_{x, \mu}-\left(\alpha_{x+\hat{\mu}}-\alpha_{x}\right)
$$

which also leave $S_{\text {gauge }}$ invariant.

Pure gauge and spin-model limits

The matter fields can be decoupled by simply setting $\beta_{I}=0$. As they don't appear in the action, their integration yields a factor 1 and we are left with the pure gauge $(\mathrm{PG}) U(1)$ lattice model with partition function

$$
Z_{P G}=\prod_{x, \mu} \int_{-\pi}^{\pi} \frac{d A_{x, \mu}}{2 \pi} e^{-S_{\text {gauge }}}
$$

The decoupling of the gauge fields is less straightforward. Strictly speaking, the $O(2)$ spin model is obtained by removing the gauge fields introduced to make the global symmetry a local one and the partition function of the $O(2)$ model reads

$$
Z_{O(2)}=\prod_{x} \int_{-\pi}^{\pi} \frac{d \varphi_{x}}{2 \pi} e^{-S_{O(2)}}
$$

with

$$
S_{O(2)}=\beta_{l} \sum_{x, \mu}\left(1-\cos \left(\varphi_{x+\hat{\mu}}-\varphi_{x}\right)\right)
$$

Clock and Ising versions

- In the 3 models discussed φ_{x} and $A_{x, \mu}$ are continuous angles with the compact identification $0 \sim 2 \pi$ (circle).
- We can also have discrete "clock" versions where φ_{x} and $A_{x, \mu}$ take only q values

$$
0, \frac{2 \pi}{q}, 2 \frac{2 \pi}{q}, \ldots,(q-1) \frac{2 \pi}{q}
$$

- These can be seen as approximations of the $U(1)$ model or just for their own sake
- The Ising case is of special interest (qbits) and usually kept in multiplicative notation ($\sigma= \pm 1$)

After Fourier transform, all the models can be represented with discrete states ($D=2$)

Figure: The red and blue dots carry integer quantum numbers. Ising: 0,1; spin-2 approximation of $U(1)$: $-2,-1,0,1,2$

After Fourier transform, all the models can be represented with discrete states $(D=3)$

Figure: The red and blue dots carry integer quantum numbers

"Profound messages"

- Tensorial truncations are compatible with the general identities derived from the symmetries of these models (universal properties of these models can be reproduced with highly simplified formulations desirable for implementations with quantum computers or for quantum simulations experiments. Y. M., PHYSICAL REVIEW D 100, 014506 (2019))
- There is a geometrical analogy between the lattice equations of motion and the selection rules of the tensor formulation
- Noether theorem: for each symmetry there is a corresponding tensor redundancy (and we can "gauge fix" the corresponding integration variable)
- arxiv xxxxx: We discuss the transfer matrix in the gauge-invariant tensor reformulation of lattice. We show the equivalence to a gauge-fixed version in a maximal temporal gauge and explain how Gauss's law is enforced. We discuss semi-classical approximations and their weak coupling correspondence for the solvable cases.

Quantum circuit for the quantum Ising model

Quantum circuit with 3 Trotter steps (arXiv:1901.05944 E. Gustafson, YM and J. Unmuth-Yockey, PRD 99 094503)

Figure 1: Circuit for 4 qubits with open boundary conditions

Trotter Fidelity

Figure: fidelity of Trotter operator at multiple different Trotter steps for (left to right) expansion and scattering with open boundary conditions (E. Gustafson, YM and J. Unmuth-Yockey arXiv:1901.05944, PRD 99 094503)

Systematic and statistical errors

Optical lattice implementation of the compact Abelian Higgs Model with a physical ladder(PRL 121, 223201)

After taking the time continuum limit:

$$
\bar{H}=\frac{\tilde{U}_{g}}{2} \sum_{i}\left(\bar{L}_{(i)}^{z}\right)^{2}+\frac{\tilde{Y}}{2} \sum_{i}\left(\bar{L}_{(i)}^{z}-\bar{L}_{(i+1)}^{z}\right)^{2}-\tilde{X} \sum_{i} \bar{L}_{(i)}^{x}
$$

Figure: Ladder with one atom per rung: tunneling along the vertical direction, no tunneling in the the horizontal direction but short range attractive interactions. A parabolic potential is applied in the spin (vertical) direction.

Nuts and Bolts

(1) Path integral and Euclidean time
(2) Classical gauge-invariance and Gauss's law
(3) Lattice models (spin and gauge)

1. The path integral (Overview)

The path integral (R. Feynman) is a way to rewrite the quantum evolution as a sum over paths joining some initial and final positions \mathbf{x}_{i} and \mathbf{x}_{f} weighted by $\mathrm{e}^{i S / \hbar}$ where S is the action corresponding to a specific path joining \mathbf{x}_{i} and $\mathbf{x}_{f} .\left(\int[\mathcal{D}]_{\mathbf{x}_{i} \rightarrow \mathbf{x}_{f}}\right.$:"sum over the paths")

$$
\left\langle\mathbf{x}_{f}\right| \mathrm{e}^{-i\left(t_{t}-t_{i}\right) \hat{H} / \hbar}\left|\mathbf{x}_{i}\right\rangle=\int[\mathcal{D} \mathbf{x}]_{\mathbf{x}_{i} \rightarrow \mathbf{x}_{\mathrm{f}}} \mathrm{e}^{i S[\mathbf{x}] / \hbar},
$$

Small step evolution

First express $\mathrm{e}^{-i\left(t_{f}-t_{i}\right) \hat{H} / \hbar}$ as a product of N_{t} short evolutions by time steps a_{t} with $N_{t} a_{t}=\left(t_{f}-t_{i}\right)$ and then inserting the identity

$$
\int d \mathbf{x}|\mathbf{x}\rangle\langle\mathbf{x}|
$$

between each of the successive steps.

$$
\begin{align*}
& \left\langle\mathbf{x}_{f}\right| \mathrm{e}^{-i\left(t_{t}-t_{i}\right) \hat{H} / \hbar}\left|\mathbf{x}_{i}\right\rangle= \tag{1}\\
& \int d \mathbf{x}_{N_{t}-1} \cdots \int d \mathbf{x}_{1}\left\langle\mathbf{x}_{f}\right| \mathrm{e}^{-i a_{t} \hat{H} / \hbar}\left|\mathbf{x}_{N_{t}-1}\right\rangle \ldots\left\langle x_{2}\right| \mathrm{e}^{-i a_{t} \hat{H} / \hbar}\left|\mathbf{x}_{1}\right\rangle\left\langle\mathbf{x}_{1}\right| \mathrm{e}^{-i a_{t} \hat{H} / \hbar}\left|\mathbf{x}_{i}\right\rangle
\end{align*}
$$

The point of using small time steps is that in this limit, the evolution operator matrix elements can be approximated by phases which will contribute to an overall $e^{i S / \hbar}$ factor. The product of integrals

$$
\int d \mathbf{x}_{N_{t}-1} \cdots \int d \mathbf{x}_{1}
$$

has a "sum over the paths" interpretation

Euclidean time

- It is convenient to think of the time parameter as a complex number and to use the Euclidean time τ (Wick rotation)

$$
\left(t_{f}-t_{i}\right) \rightarrow-i \tau
$$

- The use of Euclidean time does not affect the spectrum of \hat{H}.
- For large positive $\tau, e^{-\tau \hat{H}}$ makes the contributions of the high energy states negligible.
- Euclidean time in the path integral brings the substitution

$$
\mathrm{e}^{i S / \hbar} \rightarrow \mathrm{e}^{-S / \hbar}
$$

- This positive Boltzmann weight allows to use importance sampling methods developed in statistical mechanics (Monte Carlo).

Quick review of path mteyral
$U(t)=e^{-i \frac{\hat{H} t}{\hbar}}$ evolution operator
$U(E) \simeq\left(U\left(\frac{t}{n}\right)\right)^{n}$ evolution by n small time steps $\frac{t}{n}=\varepsilon$

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} d x|x\rangle\langle x|=1 \quad\langle x \mid y\rangle=\delta(x-y) \\
& \underset{\substack{x_{n} \\
x_{\text {final }}}}{\substack{x_{i n} \\
x_{i n}}} e^{-i \frac{\hat{H} t}{\hbar}}\left|x_{0}\right\rangle=\prod_{i=1}^{n-1} \int_{-\infty}^{+\infty} d x_{i}\left\langle x_{n}\right| e^{-i \frac{\hat{H}}{\hbar} \frac{t}{n}}\left|x_{n-1}\right\rangle \cdots\left\langle x_{1}\right| e^{-i \frac{\hat{H}}{\hbar} \frac{t}{n}}\left|x_{0}\right\rangle
\end{aligned}
$$

The problem is exactly solvable for $\hat{H}_{0}=\frac{p^{2}}{2 m}$ $e^{-\frac{i}{\hbar}}\left(\hat{H}_{0}+\widehat{V}\right) \varepsilon=e^{-\frac{i}{\hbar}} \hat{H}_{0} \varepsilon e^{-\frac{i}{\hbar} \widehat{V} \varepsilon}+\theta\left(\varepsilon^{2}\right)$ due to $\left[\hat{H}_{0}, \hat{V}\right] \neq 0$
Fexuman-Kac - Trotter

$$
\begin{aligned}
& \text { Exuman-Kac-Trotter } \\
& \left(e^{-\frac{i}{\pi}} \frac{\left(\hat{H}_{0}+\widehat{V}\right) t}{n}\right)^{n} \xrightarrow[n \rightarrow \infty]{n}\left(e^{-\frac{i}{\hbar} \frac{\hat{H}_{0} t}{n}} e^{-\frac{i}{\hbar} \frac{\widehat{V} t}{n}}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\hat{H}_{0}}{-}\left\langle x_{f}\right| e^{-i \frac{\hat{p}^{2} t}{2 m \hbar}}\left|x_{i}\right\rangle=\int_{-\infty}^{+\infty} d p\left\langle x_{f}\right| e^{-i \frac{p^{2} t}{2 m \hbar}}|p\rangle\left\langle\beta \mid x_{i}\right\rangle \\
& \langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{i \frac{p \cdot x}{\hbar}} \\
& + \text { complete } \\
& \text { the square } \downarrow \\
& =\frac{1}{2 \pi \hbar} \sqrt{\frac{\pi 2 m \hbar}{i t}} e^{+\frac{i}{\hbar} \frac{m\left(x_{f}-x_{i}\right)^{2}}{2 t}} \\
& \left\langle x_{n}\right| e^{-\frac{i \hat{H t}}{\hbar}}\left|x_{0}\right\rangle=\prod_{n \rightarrow \infty}^{n-1} \int_{i=1}^{+\infty} d x_{i}\left\langle x_{n}\right| e^{-\frac{i \hat{H}_{0} t}{\hbar n}\left|x_{n-1}\right\rangle e^{-\frac{i V\left(x_{n-1}\right) \frac{t}{n}}{\hbar}} e^{2}} \\
& \cdots\left\langle x_{1}\right| e^{-\frac{i \hat{H}_{0} t}{\pi n}}\left|x_{0}\right\rangle e^{-\frac{i V\left(x_{0}\right) t}{\hbar n}} \\
& \simeq \prod_{i=1}^{n} d x_{i} \sqrt{\frac{m}{i 2 \pi \Delta t \hbar}} e^{i S / \hbar} \\
& S \simeq \sum_{i=1}^{n-1} \Delta t\left[\frac{m}{2}\left(\frac{x_{i+1}-x_{i}}{\Delta t}\right)^{2}-V\left(x_{i}\right)\right] \underset{n \rightarrow \infty}{\rightarrow} \int d t[\underbrace{\left.\frac{m}{2} \dot{x}^{2}-V(x)\right]}_{L}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \text { Euclidean time }(\hbar=1) \\
& t \rightarrow-i \tau e^{-i t \hat{H}} \rightarrow e^{-\tau \widehat{H}} \\
& i S=\int d t\left[\frac{m}{2} \dot{x}^{2}-V(x)\right] \rightarrow i(-i) \int d \tau\left[-\frac{m}{2}\left(\frac{d x}{d \tau}\right)^{2}-V(x)\right] \\
&=-\int d \tau\left[\frac{m}{2}\left(\frac{d x}{d \tau}\right)^{2}+V(x)\right] \\
& \text { Quantum mechanic } \\
& S_{E} \simeq \sum_{i j} x_{i} K_{i j} x_{j} \text { for quadratic potential }
\end{aligned}
\end{aligned}
$$

Quantum field theory:

$$
\begin{aligned}
S_{E} & \simeq \sum_{x, y} \Phi_{x} K_{x y} \phi_{y \rightarrow \text { space time modices }} \\
& \simeq \int d^{D} x\left[\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)+\frac{1}{2} m^{2} \phi^{2}\right] \rightarrow \text { free fields }
\end{aligned}
$$

2. Classical gauge invariance and Gauss's law. Sign conventions for Maxwell's fields ($c=1$ units)

$$
\begin{aligned}
g_{\mu \nu} & =\text { diagonal }(+---) \\
A^{\mu} & :(\phi,+\mathbf{A}) \\
\partial_{\mu} & :(\partial / \partial t,+\nabla) \\
\square & =\partial_{\mu} \partial^{\mu} \\
F^{i 0} & =E^{i} \\
F^{i j} & =-\epsilon^{i j k} B^{k}(D=4) \\
F^{12} & =-B(D=3)
\end{aligned}
$$

These are consistent with the standard $D-1$-vector form:

$$
\mathbf{E}=-\boldsymbol{\nabla} \phi-\dot{\mathbf{A}},
$$

for any D, and the dimension-dependent relations

$$
\nabla \times \mathbf{A}=\left\{\begin{array}{r}
B(D=4) \\
B(D=3)
\end{array}\right.
$$

Manifestly relativistic form of Maxwell's equations

The basic object is the antisymmetric field-strength tensor

$$
F_{\mu \nu}=\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu} .
$$

In MKSA units, the Lagrangian density is

$$
\mathcal{L}^{\text {Maxwell }}=-(1 / 4) F_{\mu \nu} F^{\mu \nu}-\mu_{0} J^{\mu} A_{\mu}
$$

The action is $S=\int d^{4} x \mathcal{L}^{\text {Maxwell }}$.
Requiring $\delta S=0$ yields Maxwell's equations with charge and currents

$$
\partial_{\mu} F^{\mu \nu}=\mu_{0} J^{\nu}
$$

If we identify $F^{0 i}=-E^{i} / c, F^{i j}=-\epsilon^{i j k} B^{k}, J^{0}=\rho c, A^{0}=\phi / c$ while the 3-vectors of J^{μ} and A^{μ} are the usual currents \mathbf{J} and potentials \mathbf{A}, we recover $\nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\epsilon_{0} \dot{\mathbf{E}}\right)$ and $\boldsymbol{\nabla} \cdot \mathbf{E}=\rho / \epsilon_{0}$ with $\mu_{0} \epsilon_{0}=1 / c^{2}$.

Dual equations in D-dimensions ($c=1$ units).

$F^{\mu \nu}$ can be defined in arbitrary space-time dimensions D
The identification of the electric field $F^{0 i}=-E^{i}$ remains valid for any D.
The identification of the magnetic field is D-dependent.

- $D=2$: no magnetic field
- $D=3$ it is just a parity odd (pseudo)scalar density: $B=F^{21}$

The homogeneous Maxwell equations are D-dependent.
For $D=4$, we can define a dual tensor

$$
\tilde{F}^{\mu \nu} \equiv \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=\epsilon^{\mu \nu \rho \sigma} \partial_{\rho} A_{\sigma}
$$

where $\epsilon^{\mu \nu \rho \sigma}$ is the totally antisymmetric Levi-Civita tensor $\left(\epsilon^{0123}=+1\right)$. Since two gradients commute,

$$
\partial_{\mu} \tilde{F}^{\mu \nu}=0
$$

Exercises: Check that this equation implies $\dot{\mathbf{B}}=-\boldsymbol{\nabla} \times \mathbf{E}$ and $\boldsymbol{\nabla} \cdot \mathbf{B}=0$. Consider $D=3$ with $\tilde{F}^{\mu} \equiv \frac{1}{2} \epsilon^{\mu \rho \sigma} F_{\rho \sigma}$.

Gauge invariance in classical electrodynamics

The description of the \mathbf{E} and \mathbf{B} fields in terms of A_{μ} is not one to one. The gauge transformation

$$
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha
$$

leaves $F_{\mu \nu}$ unchanged.
For a manifestly relativistic formulation, the Lorenz gauge

$$
\partial_{\mu} A^{\mu}=0
$$

is Lorentz-invariant and plays a special role (the two last names are very similar but different). The Lorenz gauge condition has a residual invariance: under a gauge transformation

$$
\partial_{\mu} A^{\mu} \rightarrow-\square \alpha,
$$

has no effect if α is a solution of the massless Klein-Gordon equation. In the Lorenz gauge, Maxwell equations with charges and currents are simply

$$
\square A^{\nu}=\mu_{0} J^{\nu}
$$

Sourceless solutions in the Lorenz gauge

$$
A^{\mu}(x)=\epsilon^{\mu}(p) \exp (-i p \cdot x)
$$

with the condition $p_{\mu} p^{\mu}=0$. The Lorenz gauge condition implies that

$$
p_{\mu} \epsilon^{\mu}(p)=0
$$

The residual gauge symmetry allows:

$$
\epsilon^{\mu}(p) \rightarrow \epsilon^{\mu}(p)+\lambda p^{\mu}
$$

and we are left with $D-2$ transverse polarizations. As an example in $D=4$, if p^{μ} represents the motion in the z direction $(E, 0,0, E)$, the polarization ϵ^{μ} can be linear combinations of $(1,0,0,1),(0,1,0,0)$ and $(0,0,1,0)$. The first possibility can be eliminated with the residual gauge transformation and we are left with two transverse polarizations ϵ^{1} and ϵ^{2}. After this is done, we end up with a plane wave solution satisfying the conditions $A^{0}=0$ and $\nabla \cdot \mathbf{A}=0$.

Gauge fixing term

It is possible to add a gauge symmetry breaking term

$$
\mathcal{L}^{g s b}=-\frac{\lambda}{2}\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

With this extra term, the equations of motion become

$$
\square A^{\nu}+(\lambda-1) \partial^{\nu}\left(\partial_{\mu} A^{\mu}\right)=\mu_{0} J^{\nu} .
$$

By picking $\lambda=1$, we recover

$$
\square A^{\nu}=\mu_{0} J^{\nu}
$$

This choice is called the "Feynman gauge". Physical processes should not depend on λ

The Hamiltonian formalism for Maxwell's gauge fields

The time derivative of A_{0} does not appear in $\mathcal{L}^{\text {Maxwell }}$ and the canonically conjugate momentum is naively zero, but the variation of A_{0} is needed to obtain the equation of motion (in absence of sources):

$$
\partial_{\mu} F^{\mu 0}=0
$$

which in any dimensions is equivalent to Gauss's law

$$
\nabla \cdot \mathbf{E}=0
$$

With a symmetry breaking term

$$
\mathcal{L}^{M G F}=-(1 / 4) F_{\mu \nu} F^{\mu \nu}-\frac{\lambda}{2}\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

This introduces terms including the time derivative of A_{0}.

Conjugate momenta

$$
\frac{\partial \mathcal{L}^{M G F}}{\partial \dot{\mathbf{A}}}=\dot{\mathbf{A}}+\nabla A^{0}=-\mathbf{E} \equiv \boldsymbol{\pi}
$$

and

$$
\frac{\partial \mathcal{L}^{M G F}}{\partial \dot{\mathcal{A}^{0}}}=-\lambda \partial_{\mu} A^{\mu} \equiv \pi^{0}
$$

We can eliminate the time derivatives using the conjugate momenta:

$$
\begin{align*}
\dot{\mathbf{A}} & =\boldsymbol{\pi}-\nabla A^{0} \tag{2}\\
\dot{A^{0}} & =-\frac{\pi^{0}}{\lambda}-\nabla \cdot \mathbf{A} . \tag{3}
\end{align*}
$$

Hamiltonian density

$$
\mathcal{H}^{M G F}=\pi \cdot \dot{\mathbf{A}}+\pi^{0} \dot{A}^{0}-\mathcal{L}^{M G F}
$$

After eliminating the time derivatives, we obtain for $D=4$

$$
\mathcal{H}^{M G F}=\frac{1}{2} \boldsymbol{\pi} \cdot \boldsymbol{\pi}+\frac{1}{2} \mathbf{B} \cdot \mathbf{B}-\boldsymbol{\pi} \cdot \nabla A^{0}-\frac{1}{2 \lambda}\left(\pi^{0}\right)^{2}-\pi^{0} \nabla \cdot \mathbf{A} .
$$

$\boldsymbol{\pi}=-\mathbf{E}($ any $D) ; \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}(D=4) ;$
A and π are conjugate variables (like x and p)
For $D=3$, we just replace $\mathbf{B} \cdot \mathbf{B}$ by B^{2}.
For $D=2$, there is no magnetic field.
Hamilton equations.

$$
\dot{\mathbf{A}}=\frac{\partial \mathcal{H}^{M G F}}{\partial \boldsymbol{\pi}}=\boldsymbol{\pi}-\nabla A^{0}
$$

This just the definition of the electric field in terms of the potentials.

Hamilton equations. (continued)

The second Hamilton equation is dimension dependent. For $D=4$, we have

$$
\dot{\boldsymbol{\pi}}=-\frac{\partial \mathcal{H}^{M G F}}{\partial \mathbf{A}}=-\boldsymbol{\nabla} \times \mathbf{B}-\nabla \pi^{0}
$$

Maxwell equation involving the current \mathbf{j} (set to zero) but with an extra term $-\nabla \pi^{0}$.

For $D=2$ this Maxwell equation reads $\dot{E}_{X}=0$.
For $D=3$ we have $\dot{E}_{x}=\frac{\partial}{\partial y} B$ and $\dot{E}_{y}=-\frac{\partial}{\partial x} B$
For $D=4$, we have the usual form $\dot{\mathbf{E}}=\nabla \times \mathbf{B}$.

Hamilton's equations for A^{0}

$$
\dot{A^{0}}=\frac{\partial \mathcal{H}^{M G F}}{\partial \pi^{0}}=-\frac{\pi^{0}}{\lambda}-\nabla \cdot \mathbf{A}
$$

(relation between velocities and momenta used to transition from Lagrangian to Hamiltonian: $\left.\pi^{0}=-\lambda\left(\partial_{\mu} A^{\mu}\right)\right)$.

$$
\dot{\pi^{0}}=-\frac{\partial \mathcal{H}^{M G F}}{\partial A^{0}}=-\nabla \cdot \boldsymbol{\pi}=\nabla \cdot \mathbf{E}
$$

This is Gauss's law $(\nabla \cdot \mathbf{E}=0)$ with an extra term π^{0}.
We recover Maxwell equations if we impose $\pi^{0}=0$ or equivalently the Lorenz condition $\partial_{\mu} A^{\mu}=0$.
The quantization of the classical model using an Hilbert space of particles carrying momenta and polarization is non-trivial (see Weinberg, The Quantum Theory of Fields I). It is much simpler in the path integral formalism.

Euclidean time

Minkowskian	Euclidean
t	$-\dot{i} \tau$
$\mathrm{e}^{-i t H}$	$\mathrm{e}^{-\tau H}$
$g^{\mu \nu}$	$\delta^{\mu \nu}$
$d^{D} X$	$-i d^{D} x_{E}$
\mathbf{x}	\mathbf{x}
$\boldsymbol{\nabla}$	$\boldsymbol{\nabla}$
\mathbf{A}	\mathbf{A}
\mathbf{B}	\mathbf{B}
ϕ	$-i A^{D}$
$\frac{\partial \mathbf{E}_{M}}{\partial t}$	$-\frac{\partial \mathbf{E}_{E}}{\partial \tau}$

The last two lines of the table require some explanations.

Euclidean signs

At Euclidean time, we keep the Minkowskian definition of the field strenght tensor

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

but all the indices can be raised or lowered without changing the sign.
We define

$$
E_{E}^{j}=F_{E}^{j D}
$$

which should transform like $\partial / \partial t \rightarrow i \partial / \partial \tau$ under $t \rightarrow-i \tau$. This can be accomplished with $\phi \rightarrow-i A^{D}$ because we can lower the index of the spatial index without changing the sign as done in Minkowski space. As we keep the standard relation $\boldsymbol{\nabla} \times \mathbf{A}=\mathbf{B}$ which involves only 3 -vectors, we have for the same reason

$$
F_{E}^{j k}=+\epsilon^{j k l} B_{E}^{\prime}
$$

With these definitions, the sign in Maxwell equation changes.

$$
\dot{\mathbf{E}}_{E}=-\nabla \times \mathbf{B}_{E}
$$

3. Lattice quantization of spin and gauge models

Euclidean time: treat space and time on the same footing.
We discretize space and time using a D-dimensional (hyper) cubic Euclidean lattice. For instance, for $D=2$, we use a square lattice. The sites are denoted $x=\left(x_{1}, x_{2}, \ldots x_{D}\right)$, with $x_{D}=\tau$, the Euclidean time direction. In lattice units, the space-time sites are labelled with integers $\frac{x}{a}=n_{1} \hat{1}+\cdots+n_{D} \hat{D}$, where $n_{1} \ldots, n_{D}$ are integers and $\hat{1}, \ldots, \hat{D}$ units vectors in the the D positive directions.

Notations

The links between two nearest neighbor lattice sites x and $x+\hat{\mu}$ are labelled by (x, μ) and the plaquettes delimited by four sites $x, x+\hat{\mu}$, $x+\hat{\mu}+\hat{\nu}$ and $x+\hat{\nu}$ are labelled by (x, μ, ν). By convention, we start with the lowest index when introducing a circulation at the boundary of the plaquette as shown in Fig. 11.

Figure: Plaquette associated with (x, μ, ν).
The total number of sites is denoted V. Unless specified periodic boundary conditions are assumed. They preserve a discrete translational symmetry.

Spin models

Euclidean Lagrangian density for N real scalar fields with a $O(N)$ global symmetry.

$$
\mathcal{L}_{\text {Euclidean }}^{O(N)}=\frac{1}{2} \partial_{\mu} \vec{\phi} \cdot \partial_{\nu} \vec{\phi} \delta^{\mu \nu}+\lambda\left(\vec{\phi} \cdot \vec{\phi}-v^{2}\right)^{2}
$$

with $\vec{\phi}$ a N-dimensional vector.
The potential has degenerate minima on a N - 1-dimensional hyper-sphere S_{N-1} and a local maximum at $\vec{\phi}=0$.
For $N=2$, the potential has the following shape

Nambu-Goldstone and Brout-Englert-Higgs modes

- The degenerate minima form a circle at the very bottom.
- We can study the small fluctuations about a given minimum on the circle. Note that the choice of a minimum breaks the $O(2)$ symmetry.
- There are "soft" fluctuations along the circle (Nambu-Goldstone modes) that somehow restore the symmetry and "hard" fluctuations in the radial direction (Brout-Englert-Higgs modes).
- We can extend this analysis for arbitrary N.
- In the large λ limit we obtain a Lagrangian which is just the kinetic term to be supplemented with the constraint that $\vec{\phi} \cdot \vec{\phi}=v^{2}$ everywhere. This keeps the NG modes and decouples the BEH mode.

Spin models

Euclidean action for the NG modes on a D-dimensional lattice with isotropic lattice spacing a

$$
S_{E}=\frac{1}{2} \sum_{x, \mu} a^{D-2}\left(\vec{\phi}_{x+\hat{\mu}}-\vec{\phi}_{x}\right) \cdot\left(\vec{\phi}_{x+\hat{\mu}}-\vec{\phi}_{x}\right)
$$

The constraint $\vec{\phi}_{x} \cdot \vec{\phi}_{x}=v^{2}$ can be expressed by introducing unit vectors: $\vec{\phi}_{x}=v \vec{\sigma}_{x}$ such that

$$
\vec{\sigma}_{x} \cdot \vec{\sigma}_{x}=1
$$

Redefining $a^{D-2} v^{2} \equiv \beta$, we get the simple action

$$
S=\beta \sum_{x, \mu}\left(1-\vec{\sigma}_{x+\hat{\mu}} \cdot \vec{\sigma}_{x}\right)
$$

These models are often called spin models or nonlinear sigma models. The case $N=1$ is the well-known Ising model with $\sigma_{x}= \pm 1$.

Terminology

The case $N=1$ is the well-known Ising model with $\sigma_{x}= \pm 1$.
For $N=2$, the terminology $O(2)$-model, "planar model" or "classical XY model" is common. If we use the circle parametrization

$$
\sigma_{x}^{1}=\cos \left(\varphi_{x}\right), \text { and } \sigma_{x}^{2}=\sin \left(\varphi_{x}\right)
$$

then

$$
\vec{\sigma}_{x+\hat{\mu}} \cdot \vec{\sigma}_{x}=\cos \left(\varphi_{x+\hat{\mu}}-\varphi_{x}\right)
$$

For $N=3$, the symmetry becomes non-Abelian and the model is sometimes called the "classical Heisenberg model". In the large- N limit, the model becomes solvable if we take limit in such a way that $N / \beta(N)=\lambda_{t}$ remains constant.

Complex generalizations and local gauge invariance

$I O(2)$ model using the complex form $\Phi_{x}=\mathrm{e}^{i \varphi_{x}}$. Droping the constant term, the $O(2)$ action reads

$$
S=-\frac{\beta}{2} \sum_{x, \mu}\left(\Phi_{x}^{\star} \Phi_{x+\hat{\mu}}+h . c\right)=-\beta \sum_{x, \mu} \cos \left(\varphi_{x+\hat{\mu}}-\varphi_{x}\right) .
$$

The $O(2)$ model has a global symmetry $\varphi_{x} \rightarrow \varphi_{x}+\alpha$. With the complex notation, this transformation becomes $\Phi_{x} \rightarrow \mathrm{e}^{i \alpha} \Phi_{x}$. We would like to promote this symmetry to a local one

$$
\Phi_{x} \rightarrow \mathrm{e}^{i \alpha_{x}} \Phi_{x}
$$

This can be achieved by inserting a phase $U_{x, \mu}$ between Φ_{x}^{\star} and $\Phi_{x+\hat{\mu}}$ which transforms like

$$
U_{x, \mu} \rightarrow \mathrm{e}^{i \alpha_{x}} U_{x, \mu} \mathrm{e}^{-i \alpha_{x+\hat{\mu}}}
$$

Non-Abelian generalizations

The procedure can be extended for arbitrary N-dimensional complex vectors $\boldsymbol{\Phi}_{x}$ with a local transformation involving a $U(N)$ matrix V_{x} :

$$
\boldsymbol{\Phi}_{x} \rightarrow V_{x} \boldsymbol{\Phi}_{x}
$$

In addition, we introduce $U(N)$ matrices $\mathbf{U}_{x, \hat{\mu}}$ transforming like

$$
\mathbf{U}_{x, \hat{\mu}} \rightarrow V_{x} \mathbf{U}_{x, \hat{\mu}} V_{x+\hat{\mu}}^{\dagger}
$$

The action

$$
\boldsymbol{S}=-\frac{\beta}{2} \sum_{x, \mu}\left(\boldsymbol{\Phi}_{x}^{\dagger} \mathbf{U}_{x, \hat{\mu}} \boldsymbol{\Phi}_{x+\hat{\mu}}+\text { h.c }\right)=
$$

has a local $U(N)$ gauge invariance. By taking the product of a set of $\mathbf{U}_{x, \mu}$ attached to the links of closed loops, we can construct gauge-invariant quantities.
Replacing Φ_{x} by a $S U(N)$ matrix U_{x} we get the principal chiral model.

$$
\boldsymbol{S}=-\frac{\beta}{2} \sum_{x, \mu}\left[\operatorname{tr}\left[\mathbf{U}_{x+\hat{\mu}}^{\dagger} \mathbf{U}_{x}\right]+\text { h.c. }\right]
$$

Pure gauge theories

If we consider two successive links in positive directions, then the local transformation in the middle site cancel and

$$
\mathbf{U}_{x, \mu} \mathbf{U}_{x+\hat{\mu}, \nu} \rightarrow V_{x} \mathbf{U}_{x, \mu} \mathbf{U}_{x+\hat{\mu}, \nu} V_{x+\hat{\mu}+\hat{\nu}}^{\dagger}
$$

If the second link goes in the negative direction, we use the Hermitian conjugate and a similar property holds

$$
\mathbf{U}_{x, \mu} \mathbf{U}_{x+\hat{\mu}-\hat{\nu}, \nu}^{\dagger} \rightarrow V_{x} \mathbf{U}_{x, \mu} \mathbf{U}_{x+\hat{\mu}-\hat{\nu}, \nu}^{\dagger} V_{x+\hat{\mu}-\hat{\nu}}^{\dagger}
$$

We can pursue this process for an arbitrary path connecting x to some $x_{\text {final }}$. The transformation on the right will be $V_{x_{\text {final }}}^{\dagger}$. If we close the path and take the trace, we obtain a gauge-invariant quantity. We call these traces of products of gauge matrices over closed loops "Wilson loops". In the case where the loop goes around the imaginary time direction, we call it a "Polyakov loop"

Wilson action (non-Abelian)

On a square, cubic or hypercubic lattice, the smallest path that give a non-trivial Wilson loop is a square. We call this square a plaquette. Claude Itzykson coined this terminology after Ken Wilson's seminar in Orsay in 1973. We explained that a plaquette is specified by (x, μ, ν). The corresponding matrix is

$$
\mathbf{U}_{\text {plaquette }}=\mathbf{U}_{x, \mu, \nu}=\mathbf{U}_{x, \mu} \mathbf{U}_{x+\hat{\mu}, \nu} \mathbf{U}_{x+\hat{\nu}, \mu}^{\dagger} \mathbf{U}_{x, \nu}^{\dagger}
$$

The simplest gauge-invariant lattice model has an action, called Wilson's action:

$$
S_{\text {Wilson }}=\beta \sum_{(x, \mu, \nu)}\left(1-\frac{1}{2 N}\left(\operatorname{Tr} \mathbf{U}_{x, \mu, \nu}+h . c\right)\right)
$$

Wilson action (Abelian)

In the Abelian case ($N=1$), the matrix reduces to a phase

$$
U_{x, \mu}=\mathrm{e}^{i A_{x, \mu}}
$$

and there is no need to take the trace. $A_{x, \mu}$ is called the gauge field. The Abelian action reads

$$
S_{A b e l i a n}=\beta \sum_{x, \mu<\nu}\left(1-\cos \left(A_{x, \mu}+A_{x+\hat{\mu}, \nu}-A_{x+\hat{\nu}, \mu}-A_{x, \nu}\right)\right) .
$$

Under gauge transformation, the gauge field transformation is

$$
A_{x, \mu} \rightarrow A_{x, \mu}+\alpha_{X}-\alpha_{X+\hat{\mu}}
$$

In the Ising case, we have $\sigma_{x, \mu}= \pm 1$ at every link and the action reads

$$
S_{\text {ssing }}=\beta \sum_{x, \mu<\nu}\left(1-\sigma_{x, \mu} \sigma_{x+\hat{\mu}, \nu} \sigma_{x+\hat{\nu}, \mu} \sigma_{x, \nu}\right)
$$

Compact Abelian Higgs Model CAHM

$$
\begin{gathered}
Z_{C A H M}=\prod_{x} \int_{-\pi}^{\pi} \frac{d \varphi_{x}}{2 \pi} \prod_{x, \mu} \int_{-\pi}^{\pi} \frac{d A_{x, \mu}}{2 \pi} e^{-S_{\text {gauge }}-S_{\text {matter }}} \\
S_{\text {gauge }}=\beta_{p l .} \sum_{x, \mu<\nu}\left(1-\cos \left(A_{x, \mu}+A_{x+\hat{\mu}, \nu}-A_{x+\hat{\nu}, \mu}-A_{x, \nu}\right)\right) \\
S_{\text {matter }}=\beta_{l .} \sum_{x, \mu}\left(1-\cos \left(\varphi_{x+\hat{\mu}}-\varphi_{x}+A_{x, \mu}\right)\right)
\end{gathered}
$$

The CAHM is a gauged version of the $O(2)$ model where the global symmetry under a φ shift becomes local

$$
\varphi_{x}^{\prime}=\varphi_{x}+\alpha_{x}
$$

and these local changes in $S_{\text {matter }}$ are compensated by the gauge field changes

$$
A_{x, \mu}^{\prime}=A_{x, \mu}-\left(\alpha_{x+\hat{\mu}}-\alpha_{x}\right)
$$

which also leave $S_{\text {gauge }}$ invariant.

The matter fields can be decoupled by simply setting $\beta_{l}=0$. As they don't appear in the action, their integration yields a factor 1 and we are left with the pure gauge $(\mathrm{PG}) U(1)$ lattice model with partition function

$$
Z_{P G}=\prod_{x, \mu} \int_{-\pi}^{\pi} \frac{d A_{x, \mu}}{2 \pi} e^{-S_{\text {gauge }}} .
$$

The decoupling of the gauge fields is less straightforward. Strictly speaking, the O(2) spin model is obtained by removing the gauge fields introduced to make the global symmetry a local one and the partition function of the $\mathrm{O}(2)$ model reads

$$
Z_{O(2)}=\prod_{X} \int_{-\pi}^{\pi} \frac{d \varphi_{X}}{2 \pi} e^{-S_{O(2)}}
$$

with

$$
S_{O(2)}=\beta_{l} \cdot \sum_{x, \mu}\left(1-\cos \left(\varphi_{x+\hat{\mu}}-\varphi_{x}\right)\right) .
$$

Character expansions

From the point of view of quantum computing, we see that using compact fields for models with Abelian symmetries guarantees that we have a discrete set of states. For functions over the multiplicative group $\sigma= \pm 1$, we will need

$$
\exp (\beta \sigma)=\cosh (\beta)+\sigma \sinh (\beta)
$$

Another useful formula is the Fourier expansion

$$
\exp (\beta \cos (\theta))=\sum_{n=-\infty}^{+\infty} I_{n}(\beta) \exp (i n \theta)
$$

where $I_{n}(\beta)$ is the modified Bessel function of order n. Generalizations of Pontryagin duality to compact non-Abelian groups appear in the Peter-Weyl theorem. This will translate into expansions in spherical harmonics in the following. The elegance and practical implications of having compact fields suggest that we should try to identify physical signatures of compactness that could allow us to tested this hypothesis ${ }^{\text {L }}$ experimentally. This is a subject of study for the future.

Ising model

For the Ising model, at each link (x, μ) coming out of x in the positive μ-th direction, we use the expansion (56)

$$
\mathrm{e}^{\beta \sigma_{x+\hat{\mu}} \sigma_{x}}=\cosh (\beta) \sum_{n_{x, \mu}=0,1}\left[\sigma_{x+\hat{\mu}} \sqrt{\tanh (\beta)} \sigma_{x} \sqrt{\tanh (\beta)}\right]^{n_{x, \mu}}
$$

This attaches an index $n_{x, \mu}$ at each link (x, μ). It is then possible to pull together various $\left(\sqrt{\tanh (\beta)} \sigma_{x}\right)^{n}$ and sum over σ_{x}. Using

$$
\sum_{\sigma= \pm 1} \sigma^{n}=2 \delta(\bmod [n, 2])
$$

we can rewrite the partition function as the trace of a tensor product:

$$
Z=(\cosh (\beta))^{V D} \operatorname{Tr} \prod_{x} T_{\left(n_{x-\hat{1}, 1}, n_{x, 1}, \ldots, n_{x, D}\right)}^{(x)}
$$

The local tensor $T^{(x)}$ has $2 D$ indices.

Tensor explicit form

$$
\begin{align*}
T_{\left(n_{x-\hat{1}, 1}, n_{x, 1}, \ldots, n_{x-\hat{0}, D}, n_{x, D}\right)}^{(x)} & = \tag{4}\\
\sqrt{t_{n_{x-\hat{1}, 1}} t_{n_{x, 1}}, \ldots, t_{n_{x-\hat{0}, D}} t_{n_{x, D}}} & \times \delta\left(\bmod \left[n_{x, \text { out }}-n_{x, i n}, 2\right]\right),
\end{align*}
$$

with the definitions

$$
\begin{align*}
t_{n} & \equiv(\tanh (\beta))^{n} \\
n_{x, \text { in }} & \equiv \sum_{\mu} n_{x-\hat{\mu}, \mu} \tag{5}\\
n_{x, \text { out }} & \equiv \sum_{\mu} n_{x, \mu}
\end{align*}
$$

where the sums over μ run from 1 to D.

