

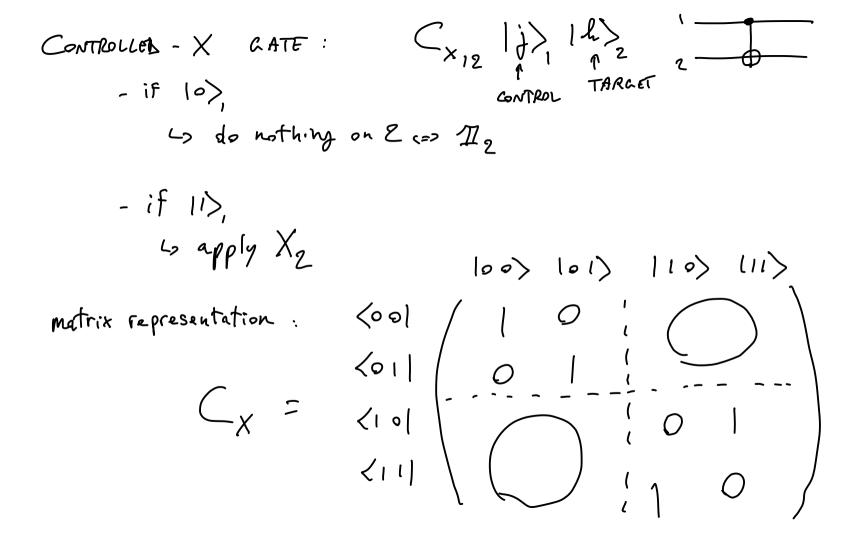
Note: QUDITS :
$$\{10\}, 11\}, ... 14-12\}$$

D-dim Hilbert space
 $145 = \sum_{j=0}^{4.1} 4; 1j\}$
RUMODUS: $\{12\}_{x\in R}$
 $145 = \int 4(2) 12> dx$
wave
function
quede - based quentum computing can be made
fault tolerant.

QUANTUM CIRCUITS : evolution from left to right
10>
$$H$$

HATE
10> $CATE$
10> H
HATE
10> $CATE$
10> H
HATE
10> $CATE$
10> CA

HADAMARD:
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = R_{y} \left(\frac{\pi}{z}\right) R_{g} (\pi)$$



$$\frac{1}{10^{2}} + \frac{1}{10^{2}} + \frac{1}$$

Source of antangled gubits Eve-sdropper (eg polarization-entangled photon pairs, one at a time) Alice 2 1 4718 0° or 22.5° NONLINEAR 2 PLATE 0° or 22.5° CRYSTAL $\sqrt{2}\left(|1\rangle |e_{2}\rangle + |e_{2}\rangle |1\rangle_{2}\right)$ $= \frac{1}{12} \left(\left| \frac{1}{2} \right\rangle \left| \frac{1}{2} \right\rangle + \left| \frac{1}{2} \right\rangle \left| \frac{1}{2} \right\rangle \right)$ Alice & Bob talk over open chamel: - disourd all measts inde in to bases ; keep rest - "sacrifice" some some-basis results to make sure they are correlated bit not, an eavesdropper must be present.

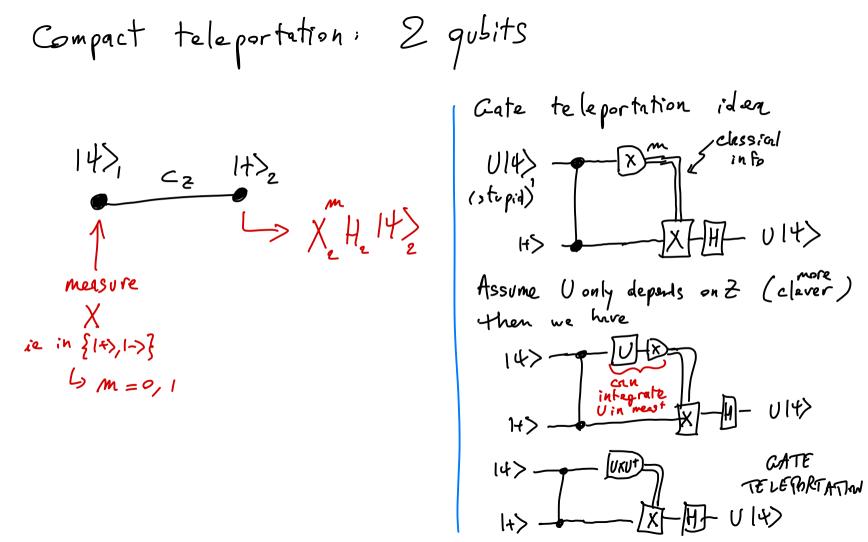
$$\begin{array}{l} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$$

=
$$\frac{1}{2} \left[|\phi_{12}^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1}|_{1,2}^{+}) + |\phi_{12}^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1}|_{0,2}^{+}) + |\chi^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1}|_{0,2}^{+}) + |\chi^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1,2}^{+}) + |\chi^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1,2}^{+}) + |\chi^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1,2}^{+}) + |\chi^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1,2}^{+}) + |\chi^{+}(\psi_{0}|_{0,2}^{+}+\psi_{1,2}^{+}) + |\chi^{+}(\psi_{0,2}|_{0,2}^{+}+\psi_{1,2}^{+}) + |\chi^{+}(\psi_{0,2}|_{0,2}^{+}+\psi_{1,2}^{+}) + |\chi^{+}(\psi_{0,2}|_{0,2}^{+}+\psi_{$$

Quantum gate teleportation : a primitive for guantum
Gottesman & Chuang, Nature (98 or 99) computing (Lesides the
circuit model)
First, a more compact teleportetion protocol that
USES CLUSTER STATES

$$|D_{1} - H - 1+2$$

 $|D_{2} - H - 1+2$
 $C_{2} |D_{2} - 1|2$
 $C_{2} |D_{2} + 1|2$



Using gumodes instead of gubits: dense oding as g sensing " emo Fields

 $2 -7 \frac{1}{\sqrt{2}} \left(100 \right) - \left(11 \right)$

Back to dense coding

 $\frac{e^{i\eta Q}}{e} = \int \frac{e^{i\eta q}}{e^{i\eta q}} \left[q + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^$ state. $\int_{-\infty}^{+\infty} |q\rangle_2 |q\rangle_3 dq = \int_{-\infty}^{+\infty} |p\rangle_2 |-p\rangle_3 dp$ = EPR state (1935) (un physical) Can <u>sense</u> any value of z and y by measuring Q_-Q2 Bell: 2 13> 13>3 and $P_1 + P_2$ How small our they be?

Concretely.
The grantized E.M. field (in our ase, optical) is

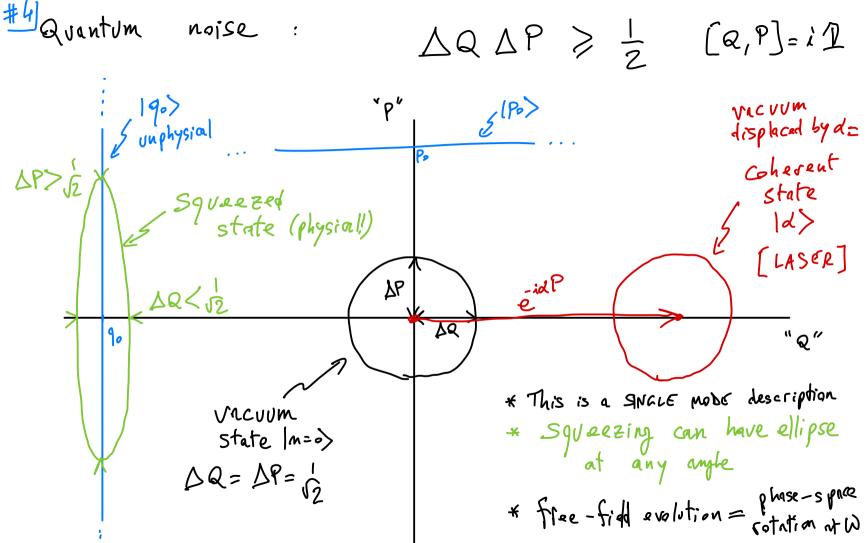
$$\vec{E}(\vec{n}) = \sqrt{\frac{\#\omega}{2\varepsilon_{0}V}} \hat{e} \left(q \ u(\vec{n}) e^{i\vec{k}\cdot\vec{n}} + d \ u^{i}(\vec{n}) e^{-i\vec{k}\cdot\vec{n}} \right)$$

$$\int_{q}^{q} \left[a_{1} a^{t} \right] = 1$$

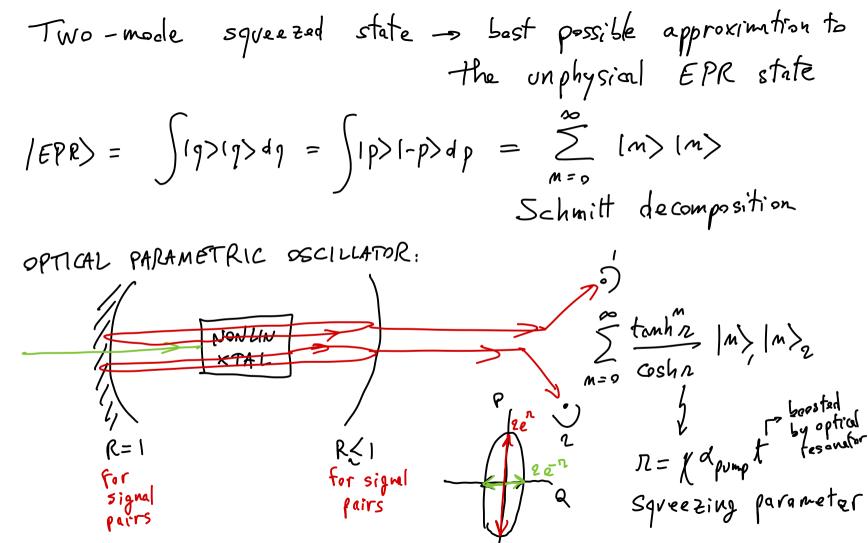
$$\int_{q}$$

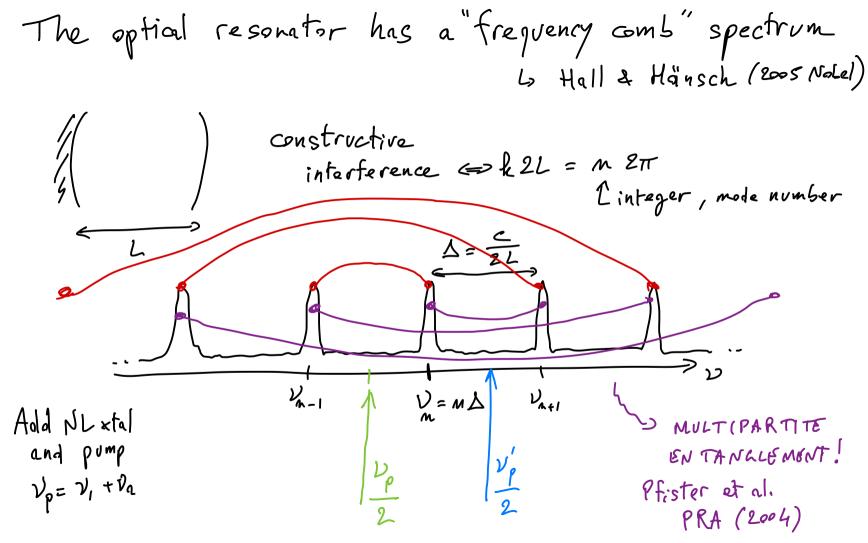
General boson mode commutator

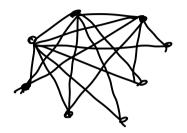
 $\begin{bmatrix} a_{\mu,\omega,\hat{e}}, a_{\mu,\omega',\hat{e}'}^{\dagger} \end{bmatrix} = S(\hat{\mu} - \hat{\mu}') S(\omega - \omega')$ $(1 - S_{\hat{e}',\hat{e}_{\perp}})$

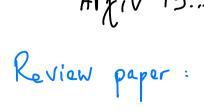


* Squeezed states:
$$\frac{p}{2}(t^2-a^2)$$
 (0) • $a_1 + a_2$ Can be \pm modes
 $H = i \hbar \chi a_{pump} a_1^{\dagger} a_2^{\dagger} + H.c.$ • We can also have
 $single - mode squeezing$
 $W_{pump} = W_1 + W_2$ W_{pump} W_1 W_2 W_2 W_2 W_2 W_3 W_4 W_4









O. Pfister, Continuous-variable quantum computing in the quantum optical frequency comb, Journal of Physics B: Atomic, Molecular, and Optical Physics 53, 012001 (2020); invited topical review. PHYSICAL REVIEW A 92, 063825 (2015)

Quantum simulation of quantum field theory using continuous variables

 Kevin Marshall,¹ Raphael Pooser,^{2,3} George Siopsis,^{3,*} and Christian Weedbrook⁴
 ¹Department of Physics, University of Toronto, Toronto, Canada M5S 1A7
 ²Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
 ³Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
 ⁴CipherQ, 10 Dundas Street E, Toronto, Canada M5B 2G9 (Received 31 March 2015; published 14 December 2015)

The year 1982 is often credited as the year that theoretical quantum computing was started with a keynote speech by Richard Feynman, who proposed a universal quantum simulator, the idea being that if you had such a machine you could in principle "imitate any quantum system, including the physical world." With that in mind, we present an algorithm for a continuous-variable quantum computing architecture which gives an exponential speedup over the best-known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer. Building on this, we give an experimental implementation based on continuous-variable states that is feasible with today's technology.

$$\mathcal{A} = \langle \text{out} | T \exp \left\{ i \int_{-T}^{T} dt [H_{\text{int}}(t) + H_{\text{c.t.}}(t)] \right\} | \text{in} \rangle$$

$$\begin{cases} \mathbf{A} = \langle \mathbf{A} | T | \mathbf{A} | \mathbf$$

